3 resultados para Eimeria jirkamoraveci sp. n.
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Identification of Eimeria mitis and Eimeria praecox in broiler feces using polymerase chain reaction
Resumo:
There are few reports concerning the epidemiology of Eimeria praecox and Eimeria mitis in Brazil. In the present experiment, the polymerase chain reaction (PCR) was used to identify these species in 156 samples of broiler chicken feces from several Brazilian states and the Federal District. Oocysts present in feces samples were purified by sodium chloride flotation followed by addition of DNAzol reagent (Invitrogen®) for extraction of genomic DNA. DNA was precipitated and stored following DNAzol reagent manufacture's instructions. The primers and PCR conditions were as described by Schnitzler et al. (1999). In the 156 field samples analyzed by PCR, 70 and 45 were positive for E. praecox and E. mitis, respectively. In this study we have shown that DNA extraction using DNAzol followed by PCR can be a useful tool in epidemiological studies, since it provides fast and reliable detection of Eimeria sp. in field samples.
Resumo:
A protective digestive microflora helps prevent and reduce broiler infection and colonization by enteropathogens. In the current experiment, broilers fed diets supplemented with probiotics and essential oil (EO) blends were infected with a standard mixed Eimeria spp. to determine effects of performance enhancers on ileal and cecal microbial communities (MCs). Eight treatment groups included four controls (uninfected-unmedicated [UU], unmedicated-infected, the antibiotic BMD plus the ionophore Coban as positive control, and the ionophore as negative control), and four treatments (probiotics BC-30 and Calsporin; and EO, Crina Poultry Plus, and Crina PoultryAF). Day-old broilers were raised to 14 days in floor pens on used litter and then were moved to Petersime batteries and inoculated at 15 days with mixed Eimeria spp. Ileal and cecal samples were collected at 14 days and 7 days postinfection. Digesta DNA was subjected to pyrosequencing for sequencing of individual cecal bacteria and denaturing gradient gel electrophoresis (DGGE) for determination of changes in ileal and cecal MC according to percentage similarity coefficient (%SC). Pyrosequencing is very sensitive detecting shifts in individual bacterial sequences, whereas DGGE is able to detect gross shifts in entire MC. These combined techniques offer versatility toward identifying feed additive and mild Eimeria infection modulation of broiler MC. Pyrosequencing detected 147 bacterial species sequences. Additionally, pyrosequencing revealed the presence of relatively low levels of the potential human enteropathogens Campylobacter sp. and four Shigella spp. as well as the potential poultry pathogen Clostridiun perfringens. Pre- and postinfection changes in ileal (56%SC) and cecal (78.5%SC) DGGE profiles resulted from the coccidia infection and with increased broiler age. Probiotics and EO changed MC from those seen in UU ilea and ceca. Results potentially reflect the performance enhancement above expectations in comparison to broilers not given the probiotics or the specific EO blends as feed supplements.