185 resultados para Effective mass (Physics)

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new procedure to construct the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the context of the position-dependent effective mass Dirac equation with the vector-coupling scheme in 1 + 1 dimensions. In the first example, we consider a case for which the mass distribution combines linear and inversely linear forms, the Dirac problem with a PT-symmetric potential is mapped into the exactly solvable Schrodinger-like equation problem with the isotonic oscillator by using the local scaling of the wavefunction. In the second example, we take a mass distribution with smooth step shape, the Dirac problem with a non-PT-symmetric imaginary potential is mapped into the exactly solvable Schrodinger-like equation problem with the Rosen-Morse potential. The real relativistic energy levels and corresponding wavefunctions for the bound states are obtained in terms of the supersymmetric quantum mechanics approach and the function analysis method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility to access the absolute neutrino mass scale through the measurement of the wrong helicity contribution of charged leptons is investigated in pion decay. Through this method, one may have access to the same effective mass m 2β extractable from the tritium beta decay experiments for electron neutrinos as well as the analogous effective mass $(m 2nuμ}){eff} for muon neutrinos. In the channel π-→ ē-v̄, the relative probability of producing an antineutrino with left helicity is enhanced if compared with the naive expectation (m ν/2E ν) 2. The possibility to constrain new interactions in the context of two-Higgs-Doublet models is also investigated. © 2009 World Scientific Publishing Company.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The polarization effects of in-plane electric fields and eccentricity on electronic and optical properties of semiconductor quantum rings (QRs) are discussed within the effective-mass approximation. As eccentric rings may appropriately describe real (grown or fabricated) QRs, their energy spectrum is studied. The interplay between applied electric fields and eccentricity is analysed, and their polarization effects are found to compensate for appropriate values of eccentricity and field intensity. The importance of applied fields in tailoring the properties of different nanoscale materials and structures is stressed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A variation of photoconductivity excitation with wavelength is applied to Si-doped Al0.56Ga0.44As (indirect bandgap material) for a wide range of temperature. The lower the temperature the lower the photocurrent below 70 K. In the range 13-30 K there is a decrease in the photoconductivity spectrum slightly above the bandgap transition energy, followed by another increase in the conductivity. We interpret these results in the light of existing models and confirm the trapping by the X-valley effective mass state. which is responsible for attenuation of persistent photoconductivity below 70 K. A DX0 intermediate state which has non-negligible lifetime is proposed as responsible for the decrease in the photoconductivity with about 561 nm of wavelength of exciting light, in the investigated 13-30 g range.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problem of confinement of neutral fermions in two-dimensional space-time is approached with a pseudoscalar double-step potential in the Dirac equation. Bound-state solutions are obtained when the coupling is of sufficient intensity. The confinement is made plausible by arguments based on effective mass and anomalous magnetic interaction. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The intrinsically relativistic problem of a fermion subject to a pseudoscalar screened Coulomb plus a uniform background potential in two-dimensional space-time is mapped into a Sturm-Liouville. This mapping gives rise to an effective Morse-like potential and exact bounded solutions are found. It is shown that the uniform background potential determinates the number of bound-state solutions. The behaviour of the eigenenergies as well as of the upper and lower components of the Dirac spinor corresponding to bounded solutions is discussed in detail and some unusual results are revealed. An apparent paradox concerning the uncertainty principle is solved by recurring to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The intrinsically relativistic problem of neutral fermions subject to kink-like potentials (similar to tanh gamma x) is investigated and the exact bound-state solutions are found. Apart from the lonely hump solutions for E = +/- mc(2), the problem is mapped into the exactly solvable Sturm-Liouville problem with a modified Poschl-Teller potential. An apparent paradox concerning the uncertainty principle is solved by resorting to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stationary states of an electron in thin GaAs elliptical quantum rings are calculated within the effective-mass approximation. The width of the ring varies smoothly along the centerline, which is an ellipse. The solutions of the Schrödinger equation with Dirichlet boundary conditions are approximated by a product of longitudinal and transversal wave functions. The ground-state probability density shows peaks: (i) where the curvature is larger in a constant-with ring, and (ii) in thicker parts of a circular ring. For rings of typical dimensions, it is shown that the effects of a varying width may be stronger than those of the varying curvature. Also, a width profile which compensates the main localization effects of the varying curvature is obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Current-voltage measurements performed on bulk AlxGa1-xAs equipped with Au/Ge/Ni contacts reveal surprising deviations from ohmic behaviour when the temperature is lowered to that of liquid nitrogen. Significant differences are observed between samples with x = 0.3 (direct band-gap material) and x = 0.5 (indirect band-gap material). The dominant states of the donor atoms Si (doping) or Ge are found to be responsible for such behaviour. Evidence for the existence of an effective-mass X-valley metastable state is also presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanocrystalline SnO2 quantum dots were synthesized at room temperature by hydrolysis reaction of SnCl2. The addition of tetrabutyl ammonium hydroxide and the use of hydrothermal treatment enabled one to obtain tin dioxide colloidal suspensions with mean particle radii ranging from 1.5 to 4.3 nm. The photoluminescent properties of the suspensions were studied. The particle size distribution was estimated by transmission electron microscopy. Assuming that the maximum intensity photon energy of the photoluminescence spectra is related to the band gap energy of the system, the size dependence of the band gap energies of the quantum-confined SnO2 particles was studied. This dependence was observed to agree very well with the weak confinement regime predicted by the effective mass model. This might be an indication that photoluminescence occurs as a result of a free exciton decay process. (C) 2004 American Institute of Physics.