57 resultados para Edificios administrativos : Curitiba (PR)
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The sedimentary Curitiba basin is located in the Central-Southern part of the first Parananense plateau, and comprises Curitiba (PR), and part of the neighbour Municipalities (fig.1). It is supposed to be of Plio-Pleistocene age. It has a shallow sedimentary fulfillment, represented by the Guabirotuba formation (BIGARELLA and SALAMUNI, 1962) which is dristributed over a large area of about 3.000km2. The internal geometry, not entirely known yet, is actually object of detailed research, that shows its geological evolution to Cenozoic tectonic movements. For the purpose of this study the definition of the structural contour of the basement and their depo-centers is fundamental. This paper presents the results of the integration of surface and subsurface data, processed by statistical methods, which allowed a more precise definition of the morphostructural framework of the basement. For the analysis of the geological spacial data, specific softwares were used for statistical processing for trend surfaces analysis. The data used in this study are of following types: a) drilling logs for ground water; b) description of surface points of geological maps (CRPM, 1977); c) description of points of geotechnical drillings and down geological survey. The data of 223 drilling logs for ground water were selected out of 770 wells. The description files of 700 outcrops, as well as planialtimetric field data, were used for the localization of the basement outcrop. Thus, a matrix with five columns was set up: utm E-W (x) and utm N-S (y); surface altitude (z); altimetric cote of the contact between sedimentary rocks and the basement (k); isopachs (l). For the study of the basement limits, the analysis of surface trends of 2(nd) and 3(rd) degree polinomial for the altimetric data (figs. 2 and 3) were used. For the residuals the method of the inverse of the square of the distance (fig.4) was used. The adjustments and the explanations of the surfaces were made with the aid of multiple linear regressions. The analysis of 3rd degree polinomial trend surface (fig.3) confirmed that the basement tends to be more exposed towards NNW-SSE explaining better the data trend through an ellipse, which striking NE-SW and dipping SW axis coincides with the trough of the basin observed in the trending surface of the basement. The performed analysis and the respective images offer a good degree of certainty of the geometric model of the Curitiba Basin and of the morphostructure of its basement. The surface trend allows to sketch with a greater degree of confidence the structural contour of the topgraphic surface (figs. 5 and 6) and of the basement (figs. 7 and 8), as well as the delimitation of intermediate structural heights, which were responsible for isolated and assymmetric depocenters. These details are shown in the map of figures 9 and 10. Thus, the Curitiba Basin is made up by a structural trough stretching NE-SW, with maximum preserved depths of about 80m, which are separated by heights and depocenters striking NW-SE (fig. 11). These structural features seems to have been controlled by tectonic reactivation during the Tertiary (HASUI, 1990) and which younger dissection was conditioned by neotectonic processes (SALAMUNI and EBERT, 1994).
Resumo:
Toxoplasma gondii, the agent for toxoplasmosis, has worldwide distribution. Horses normally play a secondary role in its life cycle, but movement around urban areas, feeding on grass and the increasing use of carthorses for gathering recyclable material in some urban areas of Brazil may increase their exposure to T. gondii infection. The aim of the present study was to investigate the frequency of anti-T. gondii antibodies in carthorses in the metropolitan region of Curitiba, PR. IgG antibodies against T. gondii were detected using the indirect fluorescence antibody test (IFAT) (titers ≥ 64). Seventeen (17.0%) of the 100 horses sampled were seropositive. There were no statistical differences in relation to sex (p = 0.28) or age (p = 0.15). Our findings suggest that carthorses are exposed to T. gondii infections and that no associations with age or sex exist.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The current accessibility to hyperspectral images of Hyperion/EO1 orbital sensor has brought new perspectives for studies of aquatic environments for allowing the remote estimative of several optically active constituents (OACs) in water body. The changes in the composition and concentration of OACs cause different patterns of absorption and scattering of electromagnetic radiation, likely to be detected using hyperspectral data. Therefore, an investigation was conducted taking into account the spectral characterization of water of a reservoir intended for public supply (Itupararanga Reservoir), from Hyperion/EO1 images and derivative analysis technique applied to spectral curves generated. Simultaneously to the acquisition of a Hyperion/EO1 image, a field campaign was carried out to collect limnological data in situ in georeferenced points. After radiometric correction of the image, reflectance curves of pixels were extracted for each station and the curves obtained were subjected to the technique of derivative analysis, which revealed features of absorption and scattering mainly associated to the presence of algal pigments. The results obtained show the presence of phytoplankton and algal activity, matching the field observation.
Resumo:
GPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and/or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series.
Resumo:
Accuracy concepts that involve systematic and random effects and precision, that involves only random ones, are reviewed in this paper. An objective discussion is presented based on the definitions that appear in the literature, followed by examples that may be enough to clarify some concepts and allow the extension for other applications. The discussion presented aims at raising eventual inconsistencies in the interpretations so as to provide better possibilities of use for those involved with this topic, which is fundamentally important in the quality analysis of cartographic, geodetic and remote sensing or photogrammetric products.
Resumo:
Brazil follows the tendency of some countries to update and/or review their fundamental geodetic network. The adoption of geocentric referentials like SIRGAS 2000, the new official reference system of the Geodetic Brazilian System has been an advance. Changes in referential implies in coordinates changes on the network stations as well as the network geometry. To make use of analogical and digital products which are already known in the old referentials are necessary approaches to the coordinate conversion, which minimize the distortions between the used reference frames. This paper presents a distortion modeling approach between reference frames, based on distortion grid generation by using the Shepard's method. To analyze the approach some experiments were performed with the generation of a 1 degrees x1 degrees distortion grid to model the distortions between SAD 69 (1996) and SIRGAS (2000) frames. The results in the test stations were promising, with an average reduction of 50% in the RMS coordinates after the distortions modeling.
Resumo:
In the past few years the interest is accomplishing a high accuracy positioning increasing. One of the methods that has been applied by the scientific community is the network based on positioning. By using multiple reference station data, it is possible to obtain centimetric positioning in a larger coverage area, in addition to gain in reliability, availability and integrity of the service. Besides, using this concept, it is possible to model the atmospheric effects (troposphere refraction and ionosphere effect). Another important question concerning this topic is related to the transmission of the network corrections to the users. There are some possibilities for this fact and an efficient one is the Virtual Reference Station (VRS) concept. In the VRS concept, a reference station is generated near to the rover receiver (user). This provides a short baseline and the user has the possibility of using a single frequency receiver to accomplish the relative positioning. In order to test this kind of positioning method, a software has been developed at São Paulo State University. In this paper, the methodology applied to generate the VRS data is described and the VRS quality is analyzed by using the Precise Point Positioning (PPP) method.
Resumo:
In the relative positioning, even considering that part of the errors due to ionosphere is canceled with the double-difference observations, strong ionospheric effects can occur in maximum solar activity period. However, in minimum solar activity period, the ionospheric effects decrease significantly and therefore an improvement of the relative positioning performance takes place. In this paper we aim at showing that improvement for the scientific and GPS community users. So, have been experiments by using GPS data of two stations of the Brazilian Network for Continuous Monitoring of GPS, forming a baseline of 430 km. The processing were use accomplished with interval of two hours, and only L1 carrier data have been used. The analysis of the obtained results has been carried out from the discrepancies between the "true" coordinates and corresponding ones obtained in the processing. In maximum solar activity period the discrepancy value reached 25 m. on the other hand, in minimum solar activity period, the discrepancy value reached 5,5 m. It is important to emphasize that the majority of the discrepancy values didn't exceed 0,50 m, and in some cases only reached 0,10 m. This shows the increase of application possibilities of the relative positioning using single-frequency GPS receivers in minimum solar activity period.
Resumo:
In the fields of Machine Vision and Photogrammetry, extracted straight lines from digital images can be used either as vector elements of a digital representation or as control entities that allow the determination of the camera interior and exterior orientation parameters. Applications related with image orientation require feature extraction with subpixel precision, to guarantee the reliability of the estimated parameters. This paper presents three approaches for straight line extraction with subpixel precision. The first approach considers the subpixel refinement based on the weighted average of subpixel positions calculated on the direction perpendicular to the segmented straight line. In the second approach, a parabolic function is adjusted to the grey level profile of neighboring pixels in a perpendicular direction to the segmented line, followed by an interpolation of this model to estimate subpixel coordinates of the line center. In the third approach, the subpixel refinement is performed with a parabolic surface adjustment to the grey level values of neighboring pixels around the segmented line. The intersection of this surface with a normal plane to the line direction generates a parabolic equation that allows estimating the subpixel coordinates of the point in the straight line, assuming that this is the critical point of this function. Three experiments with real images were made and the approach based on parabolic surface adjustment has presented better results.
Resumo:
This paper proposes a methodology for automatic extraction of building roof contours from a Digital Elevation Model (DEM), which is generated through the regularization of an available laser point cloud. The methodology is based on two steps. First, in order to detect high objects (buildings, trees etc.), the DEM is segmented through a recursive splitting technique and a Bayesian merging technique. The recursive splitting technique uses the quadtree structure for subdividing the DEM into homogeneous regions. In order to minimize the fragmentation, which is commonly observed in the results of the recursive splitting segmentation, a region merging technique based on the Bayesian framework is applied to the previously segmented data. The high object polygons are extracted by using vectorization and polygonization techniques. Second, the building roof contours are identified among all high objects extracted previously. Taking into account some roof properties and some feature measurements (e. g., area, rectangularity, and angles between principal axes of the roofs), an energy function was developed based on the Markov Random Field (MRF) model. The solution of this function is a polygon set corresponding to building roof contours and is found by using a minimization technique, like the Simulated Annealing (SA) algorithm. Experiments carried out with laser scanning DEM's showed that the methodology works properly, as it delivered roof contours with approximately 90% shape accuracy and no false positive was verified.
Resumo:
The spatial resolution improvement of orbital sensors has broadened considerably the applicability of their images in solving urban areas problems. But as the spatial resolution improves, the shadows become even a more serious problem especially when detailed information (under the shadows) is required. Besides those shadows caused by buildings and houses, clouds projected shadows are likely to occur. In this case there is information occlusion by the cloud in association with low illumination and contrast areas caused by the cloud shadow on the ground. Thus, it's important to use efficient methods to detect shadows and clouds areas in digital images taking in count that these areas care for especial processing. This paper proposes the application of Mathematical Morphology (MM) in shadow and clouds detection. Two parts of a panchromatic QuickBird image of Cuiab-MT urban area were used. The proposed method takes advantage of the fact that shadows (low intensity - dark areas) and clouds (high intensity - bright areas) represent the bottom and top, respectively, of the image as it is thought to be a topographic surface. This characteristic allowed MM area opening and closing operations to be applied to reduce or eliminate the bottom and top of the topographic surface.
Resumo:
This paper proposes a monoscopic method for automatic determination of building's heights in digital photographs areas, based on radial displacement of points in the plan image and geometry at the time the photo is obtained. Determination of the buildings' heights can be used to model the surface in urban areas, urban planning and management, among others. The proposed methodology employs a set of steps to detect arranged radially from the system of photogrammetric coordinates, which characterizes the lateral edges of buildings present in the photo. In a first stage is performed the reduction of the searching area through detection of shadows projected by buildings, generating sub-images of the areas around each of the detected shadow. Then, for each sub-image, the edges are automatically extracted, and tests of consistency are applied for it in order to be characterized as segments of straight arranged radially. Next, with the lateral edges selected and the knowledge of the flight height, the buildings' heights can be calculated. The experimental results obtained with real images showed that the proposed approach is suitable to perform the automatic identification of the buildings height in digital images.
Resumo:
This research presents a methodology for prediction of building shadows cast on urban roads existing on high-resolution aerial imagery. Shadow elements can be used in the modeling of contextual information, whose use has become more and more common in image analysis complex processes. The proposed methodology consists in three sequential steps. First, the building roof contours are manually extracted from an intensity image generated by the transformation of a digital elevation model (DEM) obtained from airborne laser scanning data. In similarly, the roadside contours are extracted, now from the radiometric information of the laser scanning data. Second, the roof contour polygons are projected onto the adjacent roads by using the parallel projection straight lines, whose directions are computed from the solar ephemeris, which depends on the aerial image acquisition time. Finally, parts of shadow polygons that are free from building perspective obstructions are determined, given rise to new shadow polygons. The results obtained in the experimental evaluation of the methodology showed that the method works properly, since it allowed the prediction of shadow in high-resolution imagery with high accuracy and reliability.
Resumo:
This paper aims at presenting an Interactive School Atlas prototype which was developed for cartography and environmental education. The methodology was based on the theoretical study about child mental development of Piaget theory, in order to elaborate strategies that allow the student a better comprehension about the spatial information understanding. It was defined as study case of sixth grade students, because they belong to the Formal Operation stage, in which the children reach the needed mental operations for understanding cartographic key concepts. This Atlas was developed in two stages: cartographic design and Atlas production. The Atlas implementation was developed seeking the use of Multimedia Cartography and animation resources that may attract students and teachers, instigating them to explore the tools and strategies to lead users to a correct interpretation of map contents. The Atlas was implemented by using the Macromedia Flash and Visual Basic softwares and the MapObjects library. Though the map has bot been evaluated yet, one should point out that it was designed according to the theoretical and methodological knowledge of the cognitive development and its relationship to cartographic conceptions, aiming at adapting the product to children cognitive skills.