26 resultados para Ecological structure
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Documenting the presence and abundance of the neotropical mammals is the first step for understanding their population ecology, behavior and genetic dynamics in designing conservation plans. The combination of field research with molecular genetics techniques are new tools that provide valuable biological information avoiding the disturbance in the ecosystems, trying to minimize the human impact in the process to gather biological information. The objective of this paper is to review the available non invasive sampling techniques that have been used in Neotropical mammal studies to apply to determine the presence and abundance, population structure, sex ratio, taxonomic diagnostic using mitochondrial markers, and assessing genetic variability using nuclear markers. There are a wide range of non invasive sampling techniques used to determine the species identification that inhabit an area such as searching for tracks, feces, and carcasses. Other useful equipment is the camera traps that can generate an image bank that can be valuable to assess species presence and abundance by morphology. With recent advances in molecular biology, it is now possible to use the trace amounts of DNA in feces and amplify it to analyze the species diversity in an area, and the genetic variability at intraspecific level. This is particularly helpful in cases of sympatric and cryptic species in which morphology failed to diagnose the taxonomic status of several species of brocket deer of the genus Mazama.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim: The present study was developed in a deforested stream located in a region that exhibits marked seasonality with the purpose to investigate whether ecological descriptors of the quantitative structure (i.e., composition, abundance, biomass, species richness, diversity) and feeding of fishes do change between the dry and wet periods. Methods: Sampling was conducted bimonthly from April 2004 to February 2005 by using a standardized effort with electrofishing equipment and environmental variables measurements. Results: We collected 713 fishes belonging to 23 species. The most abundant species were Gymnotus carapo (24.0%) and Poecilia reticulata (23.8%). Species richness, abundance, and biomass showed to be higher in the wet period, but these differences were not significant and did not influence the multivariate pattern of the assemblage (ANOSIM, R = 0.148). Nevertheless, average dissimilarity between community structure in the dry and wet periods was 52.7%, mainly due to the differential contribution of P. reticulata, notably more abundant in the wet season, under quasi-hypoxic water conditions. Examination of 333 gastric contents of 12 species evidenced that food variety was higher in the dry period. of these species, 67% (Astyanax altiparanae, Astyanax fasciatus, Geophagus brasiliensis, Gymnotus carapo, Hypostomus ancistroides, Phalloceros harpagos, Poecilia reticulata, and Rhamdia quelen) kept the diet throughout the year, being classified in the same trophic groups in both periods, and detritus was the most important item for half of them, followed by aquatic insects. Overall, no significant differences in the community's diet between periods were registered (ANOSIM, R = [long dash]0.04). Conclusions: This relative constancy suggests a quite regular availability of resources (mainly shelters in submerged marginal grasses and detritus) along the year.
Resumo:
In an area of tropical seasonal semideciduous forest, the soil characteristics, floristic composition, physiognomic structure, and the distribution of three regeneration and three dispersal guilds were studied for four stands within the forest that had documented histories of varying degrees of human disturbance. The aim was to study forest regeneration in areas of preserved forest and secondary forest, with parts of both types of forest experiencing either 'intensive' or 'occasional' cattle trampling. The study was carried out in the Sebastiao Aleixo da Silva Ecological Station, Bauru, São Paulo State, Brazil. Two stands were called 'secondary' because they corresponded to forest tracts that were felled and occupied by crops and pastures in the past and then abandoned to forest regeneration ca. 40 years before this study. The other two stands, called 'preserved', corresponded to areas of the fragment where the forest has been maintained with only minor human impacts. The arboreal component of the tree community (diameter at breast height or dbh greater than or equal to 5 cm) was sampled in 20 plots of 40 m x 40 m, and the subarboreal component (diameter at the base of the stem or dbs < 5 cm and height greater than or equal to 0.5 m) in subplots of 40 m x 2 m. Physiognomic features, such as canopy height and density of climbing plants, were registered all over a 5 m x 5 m gridline laid on the sample plots. Soil bulk samples were collected for chemical and textural analyses. Most detected differences contrasted the secondary to the preserved forest stands. The soils of the secondary stands showed higher proportions of sand and lower levels of mineral nutrients and organic matter than those of the preserved stands, probably due to higher losses by leaching and erosion. Compared to the secondary stands, the preserved ones had higher proportions of tall trees, higher mean canopy height, lower species diversity, higher abundance of autochorous and shade-tolerant climax species, and lower abundance of pioneer and light-demanding climax species. Despite the high proportion of species shared by the preserved and secondary stands (108 out of 139), they differed consistently in terms of density of the most abundant species. on the other hand, the secondary and preserved stands held similar values for tree density and basal area, suggesting that 40 years were enough to restore these features. Effects of cattle trampling on the vegetation were detected for the frequency of trees of anemochorous and zoochorous species, which were higher in the stands under occasional and intensive cattle trampling, respectively. The density of thin climbers was lower in the stands with intensive trampling. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Biodiversity is organised into complex ecological networks of interacting species in local ecosystems, but our knowledge about the effects of habitat fragmentation on such systems remains limited. We consider the effects of this key driver of both local and global change on both mutualistic and antagonistic systems at different levels of biological organisation and spatiotemporal scales.There is a complex interplay of patterns and processes related to the variation and influence of spatial, temporal and biotic drivers in ecological networks. Species traits (e.g. body size, dispersal ability) play an important role in determining how networks respond to fragment size and isolation, edge shape and permeability, and the quality of the surrounding landscape matrix. Furthermore, the perception of spatial scale (e.g. environmental grain) and temporal effects (time lags, extinction debts) can differ markedly among species, network modules and trophic levels, highlighting the need to develop a more integrated perspective that considers not just nodes, but the structural role and strength of species interactions (e.g. as hubs, spatial couplers and determinants of connectance, nestedness and modularity) in response to habitat fragmentation.Many challenges remain for improving our understanding: the likely importance of specialisation, functional redundancy and trait matching has been largely overlooked. The potentially critical effects of apex consumers, abundant species and supergeneralists on network changes and evolutionary dynamics also need to be addressed in future research. Ultimately, spatial and ecological networks need to be combined to explore the effects of dispersal, colonisation, extinction and habitat fragmentation on network structure and coevolutionary dynamics. Finally, we need to embed network approaches more explicitly within applied ecology in general, because they offer great potential for improving on the current species-based or habitat-centric approaches to our management and conservation of biodiversity in the face of environmental change.
Resumo:
The population structure of U. vocator was investigated during a one-year period in three mangrove forests in southeast Brazil. The study specifically addressed comparisons on individual size juvenile recruitment and sex-ratio. The structure of the mangrove forests, i.e. density, basal area, and diameter, and the physical properties of sediments. i.e. texture and organic matter contents, were also examined. A catch-per-unit-effort (CPUE) technique was used to sample the crab populations using 15-min sampling periods by two people. Males always outnumbered females, probably due to ecological and behavioural attributes of these crabs. The median size of fiddler crabs differed among the sampled populations. The mangroves at Indaiá and Itamambuca showed higher productivity than those at Itapanhaú, where oil spills impacting the shore were reported. Marked differences were found regarding individual size, either their size at the onset of sexual maturity or their asymptotic size, suggesting that food availability may be favouring growth in the studied populations.
Resumo:
How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small (< 10), with model selection favouring less than five. Using 18 high-quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large-scale community structure. © 2013 Blackwell Publishing Ltd/CNRS.