5 resultados para Earthquake resistant design.
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
background. The prevalence of resistance to imipenem and ceftazidime among Pseudomonas aeruginosa isolates is increasing worldwide.objective. Risk factors for nosocomial recovery ( defined as the finding of culture- positive isolates after hospital admission) of imipenemresistant P. aeruginosa ( IRPA) and ceftazidime- resistant P. aeruginosa ( CRPA) were determined.design. Two separate case- control studies were conducted. Control subjects were matched to case patients ( ratio, 2: 1) on the basis of admission to the same ward at the same time as the case patient. Variables investigated included demographic characteristics, comorbid conditions, and the classes of antimicrobials used.setting. The study was conducted in a 400- bed general teaching hospital in Campinas, Brazil that has 14,500 admissions per year. Case patients and control subjects were selected from persons who were admitted to the hospital during 1992 - 2002.results. IRPA and CRPA isolates were obtained from 108 and 55 patients, respectively. Statistically significant risk factors for acquisition of IRPA were previous admission to another hospital ( odds ratio [ OR], 4.21 [ 95% confidence interval {CI}, 1.40- 12.66];), hemodialysis Pp. 01 ( OR, 7.79 [ 95% CI, 1.59- 38.16];), and therapy with imipenem ( OR, 18.51 [ 95% CI, 6.30- 54.43];), amikacin ( OR, 3.22 Pp. 01 P !.001 [ 95% CI, 1.40- 7.41];), and/ or vancomycin ( OR, 2.48 [ 95% CI, 1.08- 5.64];). Risk factors for recovery of CRPA were Pp. 005 Pp. 03 previous admission to another hospital ( OR, 18.69 [ 95% CI, 2.00- 174.28];) and amikacin use ( OR, 3.69 [ 95% CI, 1.32- 10.35]; Pp. 01). Pp. 01conclusion. Our study suggests a definite role for several classes of antimicrobials as risk factors for recovery of IRPA but not for recovery of CRPA. Limiting the use of only imipenem and ceftazidime may not be a wise strategy to contain the spread of resistant P. aeruginosa strains.
Resumo:
Introduction: Multidrug-resistant Pseudomonas aeruginosa is a major threat in healthcare settings. The use of antimicrobials can influence the incidence of resistant strains by direct and indirect mechanisms. The latter can be addressed by ecological studies. Methods: Our group attempted to analyze the relation between the use of antipseudomonal drugs and the incidence of MDR-PA among 18 units from a 400-bed teaching hospital. The study had a retrospective, ecological design, comprising data from 2004 and 2005. Data on the use of four antimicrobials (amikacin, ciprofloxacin, ceftazidime and imipenem) were tested for correlation with the incidence of MDR-PA (defined as isolates resistant to the four antimicrobials of interest) in clinical cultures. Univariate and multivariate linear regression analyses were performed. Results: Significant correlations were determined between use and resistance for all antimicrobials in the univariate analysis: amikacin (standardized correlation coefficient = 0.73, p = 0.001); ciprofloxacin (0.71, p = 0.001); ceftazidime (0.61, p = 0.007) and imipenem (0.87, p < 0.001). In multivariate analysis, only imipenem (0.67, p = 0.01) was independently related to the incidence of multidrug-resistant strains. Conclusions: These findings share similarities with those reported in individual-based observational studies, with possible implications for infection control.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The resumption of tuberculosis led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. Isoniazid (INH), the most prescribed drug to treat TB, inhibits an NADH-dependent enoyl-acyl carrier protein reductase (InhA) that provides precursors of mycolic acids, which are components of the mycobacterial cell wall. InhA is the major target of the mode of action of isoniazid. INH is a pro-drug that needs activation to form the inhibitory INH-NAD adduct. Missense mutations in the inhA structural gene have been identified in clinical isolates of Mycobacterium tuberculosis resistant to INH. To understand the mechanism of resistance to INH, we have solved the structure of two InhA mutants (121V and S94A), identified in INH-resistant clinical isolates, and compare them to INH-sensitive WT InhA structure in complex with the INH-NAD adduct. We also solved the structure of unliganded INH-resistant S94A protein, which is the first report on apo form of InhA. The salient features of these structures are discussed and should provide structural information to improve our understanding of the mechanism of action of, and resistance to, INH in M. tuberculosis. The unliganded structure of InhA allows identification of conformational changes upon ligand binding and should help structure-based drug design of more potent antimycobacterial agents. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)