30 resultados para EXCITON CONFINEMENT
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Nanocrystalline SnO2 quantum dots were synthesized at room temperature by hydrolysis reaction of SnCl2. The addition of tetrabutyl ammonium hydroxide and the use of hydrothermal treatment enabled one to obtain tin dioxide colloidal suspensions with mean particle radii ranging from 1.5 to 4.3 nm. The photoluminescent properties of the suspensions were studied. The particle size distribution was estimated by transmission electron microscopy. Assuming that the maximum intensity photon energy of the photoluminescence spectra is related to the band gap energy of the system, the size dependence of the band gap energies of the quantum-confined SnO2 particles was studied. This dependence was observed to agree very well with the weak confinement regime predicted by the effective mass model. This might be an indication that photoluminescence occurs as a result of a free exciton decay process. (C) 2004 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The problem of confinement of neutral fermions in two-dimensional space-time is approached with a pseudoscalar double-step potential in the Dirac equation. Bound-state solutions are obtained when the coupling is of sufficient intensity. The confinement is made plausible by arguments based on effective mass and anomalous magnetic interaction. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The problem of confinement of spinless particles in 1 + 1 dimensions is approached with a linear potential by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V-v = V-s + constant. These isospectral problems are solved in the case of squared trigonometric potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfunctions are discussed in some detail. It is revealed that a spin-0 particle is better localized than a spin-1/2 particle when they have the same mass and are subjected to the same potentials.
Resumo:
The problem of confinement of fermions in 1 + 1 dimensions is approached with a linear potential in the Dirac equation by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The problem of neutral fermions subject to a pseudoscalar potential is investigated. Apart from the solutions for E = +/- mc(2), the problem is mapped into the Sturm-Liouville equation. The case of a singular trigonometric tangent potential (similar to tan gamma x) is exactly solved and the complete set of solutions is discussed in some detail. It is revealed that this intrinsically relativistic and true confining potential is able to localize fermions into a region of space arbitrarily small without the menace of particle-antiparticle production.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The so-called conformal affine Toda theory coupled to the matter fields (CATM), associated to the (s) over capl(2) affine Lie algebra, is studied. The conformal symmetry is fixed by setting a connection to zero, then one defines an off-critical model, the affine Toda model coupled to the matter (ATM). Using the dressing transformation method we construct the explicit forms of the two-soliton classical solutions, and show that a physical bound soliton-antisoliton pair (breather) does not exist. Moreover, we verify that these solutions share some features of the sine-Gordon (massive Thirring) solitons, and satisfy the classical equivalence of topological and Noether currents in the ATM model. We show, using bosonization techniques that the ATM theory decouples into a sine-Gordon model and a free scalar. Imposing the Noether and topological currents equivalence as a constraint, one can show that the ATM model leads to a bag model like mechanism for the confinement of the color charge inside the sine-Gordon solitons (baryons).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study, we investigate the possibility of mode localization occurrence in a non-periodic Pfluger's column model of a rocket with an intermediate concentrated mass at its middle point. We discuss the effects of varying the intermediate mass magnitude and its position and the resulting energy confinement for two cases. Free vibration analysis and the severity of mode localization are appraised, without decoupling the system, by considering as a solution basis the fundamental free response or dynamical solution. This allows for the reduction of the dimension of the algebraic modal equation that arises from satisfying the boundary and continuity conditions. By using the same methodology, we also consider the case of a cantilevered Pluger's column with rotational stiffness at the middle support instead of an intermediate concentrated mass. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In the present work we numerically simulated the motion of particles coorbital to a small satellite under the Poynting-Robertson light drag effect in order to verify the symmetry suggested by Dermott et al. (1979, 1980) on their ring confinement model. The results reveal a more complex scenario, especially for very small particles (micrometer sizes), which present chaotic motion. Despite the complexity of the trajectories the particles remain confined inside the coorbital region. However, the dissipative force caused by the solar radiation also includes the radiation pressure component which can change this configuration. Our results show that the inclusion of the radiation pressure, which is not present in the original confinement model, can destroy the configuration in a time much shorter than the survival time predicted for a dust particle in a horseshoe orbit with a satellite.
Resumo:
An analytical approximate method for the Dirac equation with confining power law scalar plus vector potentials, applicable to the problem of the relativistic quark confinement, is presented. The method consists in an improved version of a saddle-point variational approach and it is applied to the fundamental state of massless single quarks for some especial cases of physical interest. Our treatment emphasizes aspects such as the quantum-mechanical relativistic Virial theorem, the saddle-point character of the critical point of the expectation value of the total energy, as well as the Klein paradox and the behaviour of the saddle-point variational energies and wave functions.
Resumo:
The magnetic-field and confinement effects on the Land, factor in AlxGa1-xAs parabolic quantum wells under magnetic fields applied parallel or perpendicular to the growth direction are theoretically studied. Calculations are performed in the limit of low temperatures and low electron density in the heterostructure. The g factor is obtained by taking into account the effects of non-parabolicity and anisotropy of the conduction band through the 2 x 2 Ogg-McCombe Hamiltonian, and by including the cubic Dresselhaus spin-orbit term. A simple formula describing the magnetic-field dependence of the effective Land, factor is analytically derived by using the Rayleigh-Schrodinger perturbation theory, and it is found in good agreement with previous experimental studies devoted to understand the behavior of the g factor, as a function of an applied magnetic field, in semiconductor heterostructures. Present numerical results for the effective Land, factor are shown as functions of the quantum-well parameters and magnetic-field strength, and compared with available experimental measurements.