16 resultados para EGFP
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Background: To investigate mechanisms of fetal-maternal cell interactions in the bovine placenta, we developed a model of transgenic enhanced Green Fluorescent Protein (t-eGFP) expressing bovine embryos produced by nuclear transfer (NT) to assess the distribution of fetal-derived products in the bovine placenta. In addition, we searched for male specific DNA in the blood of females carrying in vitro produced male embryos. Our hypothesis is that the bovine placenta is more permeable to fetal-derived products than described elsewhere. Methodology/Principal Findings: Samples of placentomes, chorion, endometrium, maternal peripheral blood leukocytes and blood plasma were collected during early gestation and processed for nested-PCR for eGFP and testis-specific Y-encoded protein (TSPY), western blotting and immunohistochemistry for eGFP detection, as well as transmission electron microscopy to verify the level of interaction between maternal and fetal cells. TSPY and eGFP DNA were present in the blood of cows carrying male pregnancies at day 60 of pregnancy. Protein and mRNA of eGFP were observed in the trophoblast and uterine tissues. In the placentomes, the protein expression was weak in the syncytial regions, but intense in neighboring cells on both sides of the fetal-maternal interface. Ultrastructurally, our samples from t-eGFP expressing NT pregnancies showed to be normal, such as the presence of interdigitating structures between fetal and maternal cells. In addition, channels-like structures were present in the trophoblast cells. Conclusions/Significance: Data suggested that there is a delivery of fetal contents to the maternal system on both systemic and local levels that involved nuclear acids and proteins. It not clear the mechanisms involved in the transfer of fetal-derived molecules to the maternal system. This delivery may occur through nonclassical protein secretion; throughout transtrophoblastic-like channels and/or by apoptotic processes previously described. In conclusion, the bovine synepitheliochorial placenta displays an intimate fetal-maternal interaction, similar to other placental types for instance human and mouse. © 2013 Pereira et al.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
There is a molecular crosstalk between the trophoblast and maternal immune cells of bovine endometrium. The uterine cells are able to secrete cytokine/chemokines to either induce a suppressive environment for establishment of the pregnancy or to recruit immune cells to the endometrium to fight infections. Despite morphological differences between women and cows, mechanisms for immune tolerance during pregnancy seem to be conserved. Mechanisms for uterine immunesuppression in the cow include: reduced expression of major histocompatability proteins by the trophoblast; recruitment of macrophages to the pregnant endometrium; and modulation of immune-related genes in response to the presence of the conceptus. Recently, an eGFP transgenic cloned embryo model developed by our group showed that there is modulation of foetal proteins expressed at the site of syncytium formation, suggesting that foetal cell can regulate not only by the secretion of specific factors such as interferon-tau, but also by regulating their own protein expression to avoid excessive maternal recognition by the local immune system. Furthermore, foetal DNA can be detected in the maternal circulation; this may reflect the occurrence of an invasion of trophoblast cells and/or their fragment beyond the uterine basement membrane in the cow. In fact, the newly description of exosome release by the trophoblast cell suggests that could be a new fashion of maternal-foetal communication at the placental barrier. Additionally, recent global transcriptome studies on bovine endometrium suggested that the immune system is aware, from an immunological point of view, of the presence of the foetus in the cow during early pregnancy.
Resumo:
Osteoblast-derived IL-6 functions in coupled bone turnover by supporting osteoclastogenesis favoring bone resorption instead of bone deposition. Gene regulation of IL-6 is complex occurring both at transcription and post-transcription levels. The focus of this paper is at the level of mRNA stability, which is important in IL-6 gene regulation. Using the MC3T3-E1 as an osteoblastic model, IL-6 secretion was dose dependently decreased by SB203580, a p38 MAPK inhibitor. Steady state IL-6 mRNA was decreased with SB203580 (2 μM) ca. 85% when stimulated by IL-1β (1-5 ng/ ml). These effects require de novo protein synthesis as they were inhibited by cycloheximide. p38 MAPK had minor effects on proximal IL-6 promoter activity in reporter gene assays. A more significant effect on IL-6 mRNA stability was observed in the presence of SB203580. Western blot analysis confirmed that SB203580 inhibited p38 MAP kinase, in response to IL-1β in a dose dependent manner in MC3T3-E1 cells. Stably transfected MC3T3-E1 reporter cell lines (MC6) containing green fluorescent protein (GFP) with the 3′untranslated region of IL-6 were constructed. Results indicated that IL-1β, TNFα, LPS but not parathyroid hormone (PTH) could increase GFP expression of these reporter cell lines. Endogenous IL-6 and reporter gene eGFP-IL-6 3′UTR mRNA was regulated by p38 in MC6 cells. In addition, transient transfection of IL-6 3′UTR reporter cells with immediate upstream MAP kinase kinase-3 and -6 increased GFP expression compared to mock transfected controls. These results indicate that p38 MAPK regulates IL-1β-stimulated IL-6 at a post transcriptional mechanism and one of the primary targets of IL-6 gene regulation is the 3′UTR of IL-6.
Resumo:
Emphysema is characterized by destruction of alveolar walls with loss of gas exchange surface and consequent progressive dyspnea. This study aimed to evaluate the efficiency of cell therapy with bone marrow mononuclear cells (BMMC) in an animal model of elastase-induced pulmonary emphysema. Emphysema was induced in C57Bl/J6 female mice by intranasal instillation of elastase. After 21 days, the mice received bone marrow mononuclear cells from EGFP male mice with C57Bl/J6 background. The groups were assessed by comparison and statistically significant differences (p & 0. 05) were observed among the groups treated with BMMC and evaluated after 7, 14 and 21 days. Analysis of the mean linear intercept (Lm) values for the different groups allowed to observe that the group treated with BMMC and evaluated after 21 days showed the most significant result. The group that received no treatment showed a statistically significant difference when compared to other groups, except the group treated and evaluated after 21 days, evidencing the efficacy of cell therapy with BMMC in pulmonary emphysema. © 2012 Springer Science+Business Media New York.
Resumo:
Aims The macrophage migration inhibitory factor (MIF) is an intracellular inhibitor of the central nervous system actions of angiotensin II on blood pressure. Considering that angiotensin II actions at the nucleus of the solitary tract are important for the maintenance of hypertension in spontaneously hypertensive rats (SHRs), we tested if increased MIF expression in the nucleus of the solitary tract of SHR alters the baseline high blood pressure in these rats.Methods and resultsEight-week-old SHRs or normotensive rats were microinjected with the vector AAV2-CBA-MIF into the nucleus of the solitary tract, resulting in MIF expression predominantly in neurons. Rats also underwent recordings of the mean arterial blood pressure (MAP) and heart rate (via telemetry devices implanted in the abdominal aorta), cardiac- and baroreflex function. Injections of AAV2-CBA-MIF into the nucleus of the solitary tract of SHRs produced significant decreases in the MAP, ranging from 10 to 20 mmHg, compared with age-matched SHRs that had received identical microinjections of the control vector AAV2-CBA-eGFP. This lowered MAP in SHRs was maintained through the end of the experiment at 31 days, and was associated with an improvement in baroreflex function to values observed in normotensive rats. In contrast to SHRs, similar increased MIF expression in the nucleus of the solitary tract of normotensive rats produced no changes in baseline MAP and baroreflex function.ConclusionThese results indicate that an increased expression of MIF within the nucleus of the solitary tract neurons of SHRs lowers blood pressure and restores baroreflex function. © 2012 Published on behalf of the European Society of Cardiology. All rights reserved.
Resumo:
Several reports have shown that the hippocampus plays an important role in different aspects of the emotional control. There is evidence that lesions in this structure cause behavioral disinhibition, with reduction of reactions expressing fear and anxiety. Thus, to portray the aptitude of cell therapy to abrogate injuries of hippocampal tissue, we examined the behavioral effects of bone marrow mononuclear cells (BMMCs) transplantation on C57BL/6 mice that had the hippocampus damaged by electrolytic lesion. For this purpose, mice received, seven days after bilateral electrolytic lesion in the dorsal hippocampus, culture medium or BMMCs expressing the enhanced green fluorescent protein (EGFP) transgene. One week after transplantation, animals were tested in the elevated plus-maze (EPM). On the whole, three assessment sessions in the EPM were carried out, with seven days separating each trial. Thirty-five days after the induction of injury, mice were sacrificed and their brains removed for immunohistochemistry. The behavioral evaluation showed that the hippocampal lesion caused disinhibition, an effect which was slightly lessened, from the second EPM test, in transplanted subjects. On the other hand, immunohistochemical data revealed an insignificant presence of EGFP+ cells inside the brains of injured mice. In view of such scenario, we hypothesized that the subtle rehabilitation of the altered behavior might be a result from a paracrine effect from the transplanted cells. This might have been caused by the release of bioactive factors capable of boosting endogenous recuperative mechanisms for a partial regaining of the hippocampal functions. © 2013 Elsevier B.V.
Resumo:
Pós-graduação em Ciências Biológicas (Farmacologia) - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Muscular dystrophy refers to a group of more than 30 genetical disorders characterized by progressive weakness and degeneration of the skeletal muscle. No effective therapy is available at present. Recent studies have reported that the transplantation of stem cells can offer an important potential therapy for genetic diseases. Adult bone marrow mesenchymal stem cells have been identified as a nonhematopoietic stem cell population capable of self-renewal with the ability to differentiate into many cell lineages, including bone, fat, cartilage and connective tissue. Because of their similarity with muscle progenitor cells, when they are injected in affected individuals, they are able to migrate into areas of skeletal muscle degeneration and participate in the regeneration process. The adipose tissue represents an alternative source of MSCs that, as the MSCs derived from bone marrow, are capable of in vitro differentiation into osteogenic, adipogenic, myogenic and chondrogenic lineages. The objective of this project is to investigate the “in vitro” myogenic potential of mesenchymal stem cells derived from murine bone marrow and adipose tissue. Four experimental groups were analyzed: mice from lineages Lama2dy-2J/J and C57black and, C2C12 lineage cells and transformed C2C12 expressing the eGFP protein. MSCs cultures were obtained by flushing the bone marrow femurs and tibials with α-MEM or by the subcutaneous and inguinal fat from the mice. Their characterization was done by flow cytometry and in vitro differentiation. Muscle differentiation was studied through the analysis of the expression of transcriptional factors involved in muscle differentiation and/or the presence and amount of specific proteins from muscle differentiated cell. The pluripotency from bone marrow MSCs of the two lineages was evidenced and, in the muscular differentiation... (Complete abstract click electronic access below)