4 resultados para EGDMA

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements. The capacity of Mag-MIP for biotin adsorption, its kinetics and selectivity were studied in detail. The adsorption data was well described by Freundlich isotherm model with adsorption equilibrium constant (KF) of 1.46 mL g(-1). The selectivity experiments revealed that prepared Mag-MIP had higher selectivity toward biotin compared to other molecules with different chemical structure. The material was successfully applied for the determination of biotin in diverse milk samples using HPLC for quantification of the analyte, obtaining the mean value of 87.4% recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstracts : The development of analytic methods more selective and sensitive is of great importance for a better quality in the determination of chemical species, therefore increasing the reliability of the results. In this way, the optimization of separation/concentration is still necessary. The use of Molecularly Imprinted Polymers - MIPs have demonstrated to be an efficient tool of analysis with a great potential in minimizing limitations of separation/concentration techniques traditionally employed. In general, the MIPs are obtained by polymerization in the presence of a template to be imprinted so that a polymeric skeleton is formed around the future analyte. In the present work, the template used is Estradiol Valerate (EV), compound used in the hormone replacement therapy (HRT) during climacteric. After the polymerization in bulk and in an anaerobic environment using MAA, EGDMA, AIBN, acetonitrile and VE, the obtained MIP was powdered, sifted (<120 μm) and placed in a soxhlet system containing ethanol at 60 °C, in order to remove the imprinted molecule through six successive washes in periods of 24 hours. The water used in the washings was analyzed using HPLC and spectrophotometry UV/Vis. Then, the obtained MIP was dried at room temperature and 150 mg was inset in SPE cartridges in order to evaluate the polymer's efficiency in the analyte pre-concentration and extraction. To do so, 100,0 mL of VE standard solution (2mg L-1) were pre-concentrated at 4,0 mL min-1 and eluted with 10,0 mL ethanol at 1,0 mL min-1, obtaining recoveries of 53%. Additionally, a NIP (non-imprinting polymer) was prepared to compare the obtained results, in which the recovery was 80%. In the same way, studies were conducted using commercial Strata™-X cartridges, obtaining 53% recovery. Since, the results did not reflect that than was expected, in relation with the MIP efficiency in the recovery, a computational ...