15 resultados para Domain walls

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ferroelectric properties and leakage current mechanisms of preferred oriented Bi3.25La0.75Ti3O12 (BLT) thin films deposited on La0.5Sr0.5CoO3 by the polymeric precursor method were investigated. These films showed excellent ferroelectric properties in terms of large remnant polarization (2P(r)) of 47.6 mu C/cm(2) and (2E(c)) of 55 kV/cm, fatigue-free characteristics up to 10(10) switching cycles, and a current density of 0.7 mu A/cm(2) at 10 kV/cm. X-ray diffraction and scanning electron microscope investigations indicate that the deposited films exhibit a dense, well-crystallized microstructure having random orientations and with a rather smooth surface morphology. The improved ferroelectric and leakage current characteristics can be ascribed to the platelike grains of the BLT films, which make the domain walls easier to be switched under external field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the transport properties of the charge-density-wave system Fe3O2BO3. ac conductivity measurements for different frequencies are presented for temperatures above and below the structural transition. dc conductivity, as a function of temperature and pressure, yields the variation of the transition temperature with external pressure. Below this transition the conductivity is thermally activated in a wide range of temperature and the gap obtained is strongly pressure dependent. The ac conductivity at sufficiently low temperatures below the transition is ascribed to the excitation of local defects associated with domain walls and which are characteristic of the one-dimensional nature of the Fe3O2BO3 system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce and study new integrable models (IMs) of An (1)-nonabelian Toda type which admit U(1) ⊗ U(1) charged topological solitons. They correspond to the symmetry breaking SU(n + 1) → SU(2) ⊗ SU(2) ⊗ U(1)n-2 and are conjectured to describe charged dyonic domain walls of N = 1 SU(n + 1) SUSY gauge theory in large n limit. It is shown that this family of relativistic IMs corresponds to the first negative grade q = -1 member of a dyonic hierarchy of generalized cKP type. The explicit relation between the 1-soliton solutions (and the conserved charges as well) of the IMs of grades q = -1 and q = 2 is found. The properties of the IMs corresponding to more general symmetry breaking SU(n + 1) → SU(2)⊗p ⊗ U(1)n-p as well as IM with global SU(2) symmetries are discussed. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Física - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a non-linear Boundary Element Method (BEM) formulation with damage model is extended for numerical simulation of structural masonry walls in 2D stress analysis. The formulation is reoriented to analyse structural masonry, the component materials of which, clay bricks and mortar, are considered as damaged materials. Also considered are the internal variables and cell discretization of the domain. A damage model is used to represent the material behaviour and the domain discretization is also proposed and discussed. The paper presents the numerical parameters of the damage model for the material properties of the masonry components, clay bricks and mortar. Some examples are shown to validate the formulation.