28 resultados para Distribution lines
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder. © 2006 IEEE.
Resumo:
The capacitor placement (replacement) problem for radial distribution networks determines capacitor types, sizes, locations and control schemes. Optimal capacitor placement is a hard combinatorial problem that can be formulated as a mixed integer nonlinear program. Since this is a NP complete problem (Non Polynomial time) the solution approach uses a combinatorial search algorithm. The paper proposes a hybrid method drawn upon the Tabu Search approach, extended with features taken from other combinatorial approaches such as genetic algorithms and simulated annealing, and from practical heuristic approaches. The proposed method has been tested in a range of networks available in the literature with superior results regarding both quality and cost of solutions.
Resumo:
The capacitor placement problem for radial distribution networks aims to determine capacitor types, sizes, locations and control scheme. This is a combinatorial problem that can be formulated as a mixed integer nonlinear program. The paper presents an algorithm inspired in artificial immune systems and developed for this specific problem. A good performance was obtained through experimental tests applied to known systems. © 2006 IEEE.
Resumo:
In this paper a three-phase power flow for electrical distribution systems considering different models of voltage regulators is presented. A voltage regulator (VR) is an equipment that maintains the voltage level in a predefined value in a distribution line in spite of the load variations within its nominal power. Three different types of connections are analyzed: 1) wye-connected regulators, 2) open delta-connected regulators and 3) closed delta-connected regulators. To calculate the power flow, the three-phase backward/forward sweep algorithm is used. The methodology is tested on the IEEE 34 bus distribution system. ©2008 IEEE.
Resumo:
The high active and reactive power level demanded by the distribution systems, the growth of consuming centers, and the long lines of the distribution systems result in voltage variations in the busses compromising the quality of energy supplied. To ensure the energy quality supplied in the distribution system short-term planning, some devices and actions are used to implement an effective control of voltage, reactive power, and power factor of the network. Among these devices and actions are the voltage regulators (VRs) and capacitor banks (CBs), as well as exchanging the conductors sizes of distribution lines. This paper presents a methodology based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II) for optimized allocation of VRs, CBs, and exchange of conductors in radial distribution systems. The Multiobjective Genetic Algorithm (MGA) is aided by an inference process developed using fuzzy logic, which applies specialized knowledge to achieve the reduction of the search space for the allocation of CBs and VRs.
Resumo:
Smart microgrids offer a new challenging domain for power theories and metering techniques because they include a variety of intermittent power sources which positively impact on power flow and distribution losses but may cause voltage asymmetry and frequency variation. In smart microgrids, the voltage distortion and asymmetry in presence of poly-phase nonlinear loads can be also greater than in usual distribution lines fed by the utility, thus affecting measurement accuracy and possibly causing tripping of protections. In such a context, a reconsideration of power theories is required since they form the basis for supply and load characterization. A revision of revenue metering techniques is also suggested to ensure a correct penalization of the loads for their responsibility in generating reactive power, voltage asymmetry, and distortion. This paper shows that the conservative power theory provides a suitable background to cope with smart grids characterization and metering needs. Simulation and experimental results show the properties of the proposed approach.
Resumo:
The objective of this work was to analyze the consumption, electric energy cost, and economic results of irrigated citrus (Citrus sinensis). The treatments consisted of a dripping irrigation system with one and two lateral distribution lines, a micro sprinkler irrigation system and a treatment without irrigation. For each irrigation system, three water depths were used: 100%, 75% and 50% of Etc (citrus evapotranspiration). The electric energy cost for two tariff groups, Group A and Group B, was studied. For Group A, the expenses with energy were determined for the Conventional Binomial Structure tariff, the Hour-seasonal tariff (green and blue) and the special tariff for nocturnal irrigation. The kWh cost for the tariff systems were obtained from the website of CPFL (São Paulo State Power and Light Company, Brazil). The best relation between the electric energy consumption (kWh.ha -1) and productivity (t.ha -1) occurred in the treatment irrigated with 50% of the Etc. The irrigated treatments increased productivity. The biggest productivity was observed in the irrigation treatments with 50% of the Etc when compared to the ones with 100% of the Etc. The blue and green Hour-seasonal tariff system of Group A (nocturnal irrigation) was the best option. A biggest economic turnover occurred in the treatments irrigated with 50% of the Etc.
Resumo:
Foi estudada a variabilidade espacial da umidade do solo num sistema de irrigação por gotejamento em uma estufa (5,0 x 20,0m) na Fazenda Experimental São Manuel, da Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Estado de São Paulo, Brasil. Foi estabelecida a malha de amostragem no espaçamento de 1,0 x 0,5m, acrescida de quatro adensamentos de 0,25m. Foram utilizados dados da umidade do solo em 178 pontos. A análise da dependência espacial foi obtida com o auxílio do Programa GS+. Foi construído o variograma experimental e definido o modelo de ajuste, de modo que a curva que melhor se ajustou aos pontos obtidos representasse a magnitude, alcance e intensidade da variabilidade espacial da variável estudada. A umidade do solo apresentou distribuição espacial anisotrópica. Para a direção 0°, pode-se notar uma dependência espacial caracterizada como alta, com o alcance de aproximadamente 3,30m, no sentido do comprimento da estufa. Entretanto, no sentido da largura da estufa, não foi possível ajustar modelos. Utilizando a representação gráfica da superfície, a área estudada apresentou um maior teor de água na parte inicial e menor na parte final das linhas de distribuição de água. A krigagem mostrou-se um bom interpolador para mapeamento da umidade do solo.
Resumo:
Atmospheric Discharges are responsible for several lost in the electrical system therefore it´s done studies to find ways to reduce the problem caused by discharges. This branch of engineering is necessary the gathering, stock and analysis of large quantity of data to validate or refuse the many studies produced about it The CENDAT proposed a project to collect data on induced voltages in distribution lines and current waveform of the lightning, but a difficulty that arose was the accumulation of data due to lack of manpower available to catalog all the data collected. Thinking in this difficulty, the engineer Acacio Silva Neto CENDAT´s researcher with trainees began to develop a program to solve this problem. This work keeps the development of this program in order to solve the problem of accumulation of data
Resumo:
With the increasing demand for electricity, the retraining of transmission lines is necessary despite environmental restrictions and crossings in densely populated areas to build new transmission and distribution lines. Solution is reuse the existent cables, replacing the old conductor cables for new cables with higher capacity power transmission, and control of sag installed. The increasing demand for electrical power has increased the electric current on the wires and therefore, it must bear out temperatures of 150°C or more, without the risk of the increasing sag beyond the established limits. In the case of long crossings or densely populated areas, sag is due to high weight of the cable on clearance. The cable type determines the weight, sag, height and the towers dimensions, which are the items that most influence the investment of the transmission line. Hence, to reduce both cost of investment and maintenance of the line, the use of a lighter cable can reduce both number and the height of the towers, with financial return on short and long term. Therefore, in order to increase the amount of transmitted energy and reduce the number of built towers and sag, is recommended in the current work substitute the current core material (steel or aluminium) for alternatives alloys or new materials, in this case a composite, which has low density, elevated stiffness (elasticity module), thus apply the pultruded carbon fiber with epoxy resin as matrix systems and perform the study of the kinetics of degradation by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), according to their respective standards
Resumo:
In the pumping pipelines the located load losses are very important since they have direct influence on hydraulic design of an irrigation system, especially regarding the concentric reducers used in the distribution lines. Hence this work was conducted in the Laboratório de Hidráulica do Centro Federal de Educação Tecnológica de Uberaba. We analyzed 03 concentric reducers PVC 75 x 50 mm, 50 mm and 35 x 35 x 1 "operating at different flow rates. The performance of the tests with the variation of flow in every situation possible to obtain equations to estimate the loss. The equation models presented a high setting, thus enabling the determination of the localized head loss in a situation closer to field reality. For the reduction of 75 x 50 x 35 mm and 50 mm at a flow rate 16.97 m³ h-1 the pressure drop reduction was obtained respectively 0.9263 and 2.7408 mca. To the reduction of 35 x 1 "at a flow rate of 6.02 m³ h-1 was obtained 2.9304 mca pressure drop reduction. The located losses produced by these reductions are relatively high and should be considered with great discretion in hydraulic design of the irrigation system.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Double three-phase transmission lines are analyzed in this paper using a modal transformation model. The main attribute of this model is the use of a single real transformation matrix based on line geometrical characteristics and the Clarke matrix. Because of this, for any line point, the electrical values can be accessed for phase domain or mode domain using the considered transformation matrix and without convolution methods. For non-transposed symmetrical lines the errors between the model results and the exact modes are insignificant values. The eigenvector and eigenvalue analyses for transposed lines search the similarities among the three analyzed transposition types and the possible simplifications for a non-transposed case.
Resumo:
This paper presents a hybrid way mixing time and frequency domain for transmission lines modelling. The proposed methodology handles steady fundamental signal mixed with fast and slow transients, including impulsive and oscillatory behaviour. A transmission line model is developed based on lumped elements representation and state-space techniques. The proposed methodology represents an easy and practical procedure to model a three-phase transmission line directly in time domain, without the explicit use of inverse transforms. The proposed methodology takes into account the frequency-dependent parameters of the line, considering the soil and skin effects. In order to include this effect in the state matrices, a fitting method is applied. Furthermore the accuracy of proposed the developed model is verified, in frequency domain, by a simple methodology based on line distributed parameters and transfer function related to the input/output signals of the lumped parameters representation. In addition, this article proposes the use of a fast and robust analytic integration procedure to solve the state equations, enabling transient and steady-state simulations. The results are compared with those obtained by the commercial software Microtran (EMTP), taking into account a three-phase transmission line, typical in the Brazilian transmission system.
Resumo:
This paper describes an alternative procedure to obtain an equivalent conductor from a bundled conductor, taking into account the distribution of the current in subcondutors of the bundle. Firstly, it is introduced a brief background about the concept of Geometric Mean Radius (GMR) and how this methodology is applied to define an equivalent conductor and its electric parameters. Emphasizing that the classical procedure, using GMR, is limited to premise which the current is equally distributed through subconductors. Afterwards, it is described the development of proposed method and applications for an equivalent conductor obtained from a conventional transmission line bundled conductor and from an equivalent conductor based on a bundle with compressed SF(6) insulation system, where the current is unequally distributed through subconductors.