40 resultados para Distribution feeder reconfiguration
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper presents an efficient tabu search algorithm (TSA) to solve the problem of feeder reconfiguration of distribution systems. The main characteristics that make the proposed TSA particularly efficient are a) the way in which the neighborhood of the current solution was defined; b) the way in which the objective function value was estimated; and c) the reduction of the neighborhood using heuristic criteria. Four electrical systems, described in detail in the specialized literature, were used to test the proposed TSA. The result demonstrate that it is computationally very fast and finds the best solutions known in the specialized literature. © 2012 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Network reconfiguration is an important tool to optimize the operating conditions of a distribution system. This is accomplished modifying the network structure of distribution feeders by changing the open/close status of sectionalizing switches. This not only reduces the power losses, but also relieves the overloading of the network components. Network reconfiguration belongs to a complex family of problems because of their combinatorial nature and multiple constraints. This paper proposes a solution to this problem, using a specialized evolutionary algorithm, with a novel codification, and a brand new way of implement the genetic operators considering the problem characteristics. The algorithm is presented and tested in a real distribution system, showing excellent results and computational efficiency. © 2007 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
One objective of the feeder reconfiguration problem in distribution systems is to minimize the power losses for a specific load. For this problem, mathematical modeling is a nonlinear mixed integer problem that is generally hard to solve. This paper proposes an algorithm based on artificial neural network theory. In this context, clustering techniques to determine the best training set for a single neural network with generalization ability are also presented. The proposed methodology was employed for solving two electrical systems and presented good results. Moreover, the methodology can be employed for large-scale systems in real-time environment.
Resumo:
Distribution systems with distributed generation require new analysis methods since networks are not longer passive. Two of the main problems in this new scenario are the network reconfiguration and the loss allocation. This work presents a distribution systems graphic simulator, developed with reconfiguration functions and a special focus on loss allocation, both considering the presence of distributed generation. This simulator uses a fast and robust power flow algorithm based on the current summation backward-forward technique. Reconfiguration problem is solved through a heuristic methodology and the losses allocation function, based on the Zbus method, is presented as an attached result for each obtained configuration. Results are presented and discussed, remarking the easiness of analysis through the graphic simulator as an excellent tool for planning and operation engineers, and very useful for training. © 2004 IEEE.
Resumo:
Low flexibility and reliability in the operation of radial distribution networks make those systems be constructed with extra equipment as sectionalising switches in order to reconfigure the network, so the operation quality of the network can be improved. Thus, sectionalising switches are used for fault isolation and for configuration management (reconfiguration). Moreover, distribution systems are being impacted by the increasing insertion of distributed generators. Hence, distributed generation became one of the relevant parameters in the evaluation of systems reconfiguration. Distributed generation may affect distribution networks operation in various ways, causing noticeable impacts depending on its location. Thus, the loss allocation problem becomes more important considering the possibility of open access to the distribution networks. In this work, a graphic simulator for distribution networks with reconfiguration and loss allocation functions, is presented. Reconfiguration problem is solved through a heuristic methodology, using a robust power flow algorithm based on the current summation backward-forward technique, considering distributed generation. Four different loss allocation methods (Zbus, Direct Loss Coefficient, Substitution and Marginal Loss Coefficient) are implemented and compared. Results for a 32-bus medium voltage distribution network, are presented and discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot radial distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder.
Resumo:
The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder. © 2006 IEEE.
Resumo:
This paper proposes a dedicated algorithm for lation of single line-to-ground faults in distribution systems. The proposed algorithm uses voltage and current phasors measured at the substation level, voltage magnitudes measured at some buses of the feeder, a database containing electrical, operational and topological parameters of the distribution networks, and fault simulation. Voltage measurements can be obtained using power quality devices already installed on the feeders or using voltage measurement devices dedicated for fault location. Using the proposed algorithm, likely faulted points that are located on feeder laterals geographically far from the actual faulted point are excluded from the results. Assessment of the algorithm efficiency was carried out using a 238 buses real-life distribution feeder. The results show that the proposed algorithm is robust for performing fast and efficient fault location for sustained single line-to-ground faults requiring less than 5% of the feeder buses to be covered by voltage measurement devices. © 2006 IEEE.
Resumo:
This paper presents a distribution feeder simulation using VHDL-AMS, considering the standard IEEE 13 node test feeder admitted as an example. In an electronic spreadsheet all calculations are performed in order to develop the modeling in VHDL-AMS. The simulation results are compared in relation to the results from the well knowing MatLab/Simulink environment, in order to verify the feasibility of the VHDL-AMS modeling for a standard electrical distribution feeder, using the software SystemVision™. This paper aims to present the first major developments for a future Real-Time Digital Simulator applied to Electrical Power Distribution Systems. © 2012 IEEE.
Resumo:
In the network reconfiguration context, the challenge nowadays is to improve the system in order to get intelligent systems that are able to monitor the network and produce refined information to support the operator decisions in real time, this because the network is wide, ramified and in some places difficult to access. The objective of this paper is to present the first results of the network reconfiguration algorithm that has been developed to CEMIG-D. The algorithm's main idea is to provide a new network configuration, after an event (fault or study case), based on an initial condition and aiming to minimize the affected load, considering the restrictions of load flow equations, maximum capacity of the lines as well as equipments and substations, voltage limits and system radial operation. Initial tests were made considering real data from the system, provided by CEMIG-D and it reveals very promising results. © 2013 IEEE.
Resumo:
Electric power distribution systems, and particularly those with overhead circuits, operate radially but as the topology of the systems is meshed, therefore a set of circuits needs to be disconnected. In this context the problem of optimal reconfiguration of a distribution system is formulated with the goal of finding a radial topology for the operation of the system. This paper utilizes experimental tests and preliminary theoretical analysis to show that radial topology is one of the worst topologies to use if the goal is to minimize power losses in a power distribution system. For this reason, it is important to initiate a theoretical and practical discussion on whether it is worthwhile to operate a distribution system in a radial form. This topic is becoming increasingly important within the modern operation of electrical systems, which requires them to operate as efficiently as possible, utilizing all available resources to improve and optimize the operation of electric power systems. Experimental tests demonstrate the importance of this issue. (C) 2014 Elsevier Ltd. All rights reserved.