5 resultados para Discrete Domain
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We show that by introducing appropriate local Z(N)(Ngreater than or equal to13) symmetries in electroweak models it is possible to implement an automatic Peccei-Quinn symmetry, at the same time keeping the axion protected against gravitational effects. Although we consider here only an extension of the standard model and a particular 3-3-1 model, the strategy can be used in any kind of electroweak model. An interesting feature of this 3-3-1 model is that if we add (i) right-handed neutrinos, (ii) the conservation of the total lepton number, and (iii) a Z(2) symmetry, the Z(13) and the chiral Peccei-Quinn U(1)P-Q symmetries are both accidental symmetries in the sense that they are not imposed on the Lagrangian but are just a consequence of the particle content of the model, its gauge invariance, renormalizability, and Lorentz invariance. In addition, this model has no domain wall problem.
Resumo:
We show that Peccei-Quinn and lepton number symmetries can be a natural outcome in a 3-3-1 model with right-handed neutrinos after imposing a Z(11)circle timesZ(2) symmetry. This symmetry is suitably accommodated in this model when we augment its spectrum by including merely one singlet scalar field. We work out the breaking of the Peccei-Quinn symmetry, yielding the axion, and study the phenomenological consequences. The main result of this work is that the solution to the strong CP problem can be implemented in a natural way, implying an invisible axion phenomenologically unconstrained, free of domain wall formation, and constituting a good candidate for the cold dark matter.
Resumo:
Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes a computational model based on lumped elements for the mutual coupling between phases in transmission lines without the explicit use of modal transformation matrices. The self and mutual parameters and the coupling between phases are modeled using modal transformation techniques. The modal representation is developed from the intrinsic consideration of the modal transformation matrix and the resulting system of time-domain differential equations is described as state equations. Thus, a detailed profile ofthe currents and the voltages through the line can be easily calculated using numerical or analytical integration methods. However, the original contribution of the article is the proposal of a time-domain model without the successive phase/mode transformations and a practical implementation based on conventional electrical circuits, without the use of electromagnetic theory to model the coupling between phases. © 2003-2012 IEEE.
Resumo:
A transmission line is characterized by the fact that its parameters are distributed along its length. This fact makes the voltages and currents along the line to behave like waves and these are described by differential equations. In general, the differential equations mentioned are difficult to solve in the time domain, due to the convolution integral, but in the frequency domain these equations become simpler and their solutions are known. The transmission line can be represented by a cascade of π circuits. This model has the advantage of being developed directly in the time domain, but there is a need to apply numerical integration methods. In this work a comparison of the model that considers the fact that the parameters are distributed (Universal Line Model) and the fact that the parameters considered concentrated along the line (π circuit model) using the trapezoidal integration method, and Simpson's rule Runge-Kutta in a single-phase transmission line length of 100 km subjected to an operation power. © 2003-2012 IEEE.