13 resultados para Dikes.
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The Vazante Group, located in the northwestern part of Minas Gerais, hosts the most important zinc mine in Brazil, the Vazante Mine, which represents a major known example of a hypogene nonsulfide zinc deposit. The main zinc ore is represented by willemite and differs substantially from other deposits of the Vazante-Paracatu region, which are sulfide-dominated zinc-lead ore. The age of the Vazante Group and the hosted mineralization is disputable. Metamorphosed mafic dikes (metabasites) that cut the metasedimentary sequence and are affected by hydrothermal processes recently were found and may shed light on the geochronology of this important geological unit. Zircon crystals recovered from the metabasites are xenocrystic grains that yield U-Pb conventional ages ranging from 2.1 to 2.4 Ga, so the basement of the Vazante Group is Paleoproterozoic or has metasedinientary rocks whose source area was Paleoproterozoic. Pb isotopes determined for titanite separated from the metabasites have common, nonradiogenic Ph compositions, which prevents determination of their crystallization age. However, the Pb signatures observed for the titanite crystals are in agreement with those determined for galena from the carbonate-hosted Zn-Pb deposits hosted by the Vazante Group, including galena from minor sulfide ore bodies of the Vazante deposit. These similarities suggest that the metalliferous fluids that affected the metabasites may have been those responsible for galena formation, which could imply a similar lead source for both nonsulfide and sulfide zinc deposits in the Vazante-Paracatu district. This common source could be related to deep-seated, basin-derived, metalliferous fluids associated with a long-lived hydrothermal system related to diagenesis and deformation of the Vazante Group during the Neoproterozoic. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper aims to present the results of systematic survey on clastic dykes in the Corumbataí Formation (Permian), in the northeast region of the State of São Paulo. Besides this, the paper analyses genetic aspects of those features as well as their stratigraphic and sedimentologic implications in terms of geologic evolution of the northeastern Paraná Sedimentary Basin during Permian times. The field works had been developed in 3 main Corumbataí Formation outcrops (2 road cuts and a quarry) supposed to show the most important clastic dikes occurrences in the studied area. Basically, the sedimentary intrusions are formed by fine sand or silt size particles and had penetrated host rocks as near-vertical, centimeter thick, dykes (most common form) or as horizontal sheets, forming clastic sills (subsidiary form), both with variable geometric forms and dimensions. A lot of dyke walls show undulations suggesting pre-diagenetic clastic intrusions, probably near the ancient depositional surface. Almost all intrusions occur in the superior third portion of the Corumbataí Formation and some similar features seem to appear in the adjoining superposed Pirambóia Formation base. In this article the authors defend a seismic origin hypothesis for the clastic intrusions. It is important to mention that clastic intrusions tend to occur linked to expressive seismic events, with magnitude upper to 5. The analysis of isopach maps of the Permian and Mesozoic units of the Paraná Sedimentary Basin in the study area suggests a depositional system changing, from epicontinental sea conditions to shallow platform and, finally, to coastal deserts. Probably, this environmental change was driven by regional uplift accompanied by seismic events. It is possible that ancient seismicity triggered liquefaction processes and the resulting clastic intrusions. In this sense, those clastic features might be properly namedseismites.
Resumo:
Rio Branco Rapakivi Batholith is located on the southwestern portion of the Amazonian Craton in Mato Grosso and belongs to the Cachoeirinha Tectonic Domain, part of the Rio Negro-Juruena Geochronological Province, Central Brasil. The batholith is constituted by microgabbros to quartz microgabbros and microdiorites to quartz microdiorites, middle to fine-grained equigranular to porphyritic varieties form the Rio Branco Intrusive Basic Suite, showing a discontinuous distribution and located near the margins of the intrusion.Majorly constituted by porphyritic, granophyric and isotropic facies of Rio Branco Intrusive Acid Suit which is composed by older dark red rapakivi monzogranites to quartz monzonites and quartz sienites (1403±0.6 Ma) and the younger red rapakivi leuco-monzogranites (1382±49 Ma) and late equigranular to pegmatitic monzogranites. The magmatism is constituted by two distinct magmas related to the end of the collisional event of Cachoeirinha Orogeny, one with alkaline basalts generated in an intraplate environment and the other postorogenic to anorogenic with peraluminous to metaluminous compositions and define a high-K calc-alkaline to shoshonitic magmatism in transition among the I- and A-types. The contacts are marked by extensive mafic sills and dikes of alkaline basalts derived from intraplate environment of the Salto do Céu Intrusive Basic Suite (±808 Ma) associate to the Sunsás-Aguapei Orogenic Belt and metasedimentary rocks of the Aguapeí Grup.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
The Cu-Au mine of Chapada is located in the municipality of Alto Horizonte, in the northwestern portion of Goiás state and is inserted in the geological context of the Brasilia Belt, specifically the Mara Rosa Magmatic Arc, which hosts important deposits of Au and Cu-Au. The rocks found in the study area belong mainly to the Volcano-Sedimentary Sequence of Mara Rosa and are composed of basic to acidic metavolcanic rocks, psammiticpellitic metasedimentary rocks, chemical rocks and also hydrothermal products. Late intrusions occur and are represented by pegmatitic dikes and tonalitic bodies. The ore deposit of the Chapada mine is formed predominantly by the chalcopyrite-pyritemagnetite association, where pyrite is the most abundant mineral. Through the structural mapping of the mining fronts, it was able to recognize three deformational phases (Dn, Dn +1, Dn +2). During the Dn phase, isoclinal recumbent folds were formed, in association with amphibolites facies metamorphism. Later, in phase Dn +1, there was formation of drag folds and intrafolial folds in association with retrograde metamorphism in the greenschist facies. The deformational phase Dn +2, in its turn, was responsible for late symmetrical folding of the foliation, with NS and EW axes, resulting in an interference pattern of the dome-and-basin type
Resumo:
This work presents structural studies in the northwestern portion of the Pitanga Structural High, between the towns of Ipeúna and Charqueada. The area is composed by the sedimentary rocks from Paraná Basin, represented basically by Paleozoic rocks (Itararé Group, Tatuí, Irati and Corumbataí formations) and Mesozoics rocks (Pirambóia and Botucatu formations), in association with lower Cretaceous intrusive basic rocks expressed by dikes and sills. The most important structural features are distensive faults, which put together unleveled tectonic blocks and are frequently filled by diabase dikes. In this context, the main objective of this work is the study of local structures and the recognition of the tectonic association between dropped and uplifted blocks, jointly with the caracterization of a production, migration and storage model for hydrocarbons. Through the interpretation of aerial photos, field recognitions, structural and laboratorial analysis, a normal fault with direction of N30W and a slip of 20-25 meters located south of Ipeúna was recognized this fault puts the Tatuí and Irati Formations side by side. At this place and by the SP-191 route (north of Ipeúna city), sandstones from the top of Tatuí Formation are impregnated by asfaltic material. The data interpretation shows that local fault systems with NW directions have played a determinant part in the fault blocks arrangement, placing sandstone lenses from Tatuí Formation topographically above the oil shales from Irati Formation. In addition, these systems acted as migration paths to transport and storage hydrocarbon in sanstone lenses from Tatuí Formation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
The Guapiara Lineament is an important geological feature of the State of São Paulo, Brazil, associated with Mesozoic volcanism in the Paraná Basin. This paper aims at the interpretation and modeling of gravity data collected at a semi-detailed scale between Capão Bonito and Apiaí to identify the geometry of crustal partitioning along this lineament. Maps of Bouguer anomaly in the area show a remarkable positive gravimetric anomaly oriented NW-SE, which coincides with the orientation of the greater concentration of dikes associated with the Guapiara Lineament. The crustal model developed from anomalies shows a significant thinning of the crust in the area and corroborates previous studies. The crustal thinning was caused by mantle rise, reflecting the epirogenetic activity generated by the propagation of the divergent tectonic forces that occurred at the margin of the South American Plate during the Cretaceous.