197 resultados para Digital computer simulation.
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Monte Carlo simulations of water-dimethylformamide (DMF) mixtures were performed in the isothermal and isobaric ensemble at 298.15 K and 1 atm. The intermolecular interaction energy was calculated using the classical 6-12 Lennard-Jones pairwise potential plus a Coulomb term. The TIP4P model was used for simulating water molecules, and a six-site model previously optimised by us was used to represent DMF. The potential energy for the water-DMF interaction was obtained via standard geometric combining rules using the original potential parameters for the pure liquids. The radial distribution functions calculated for water-DMF mixtures show well characterised hydrogen bonds between the oxygen site of DMF and hydrogen of water. A structureless correlation curve was observed for the interaction between the hydrogen site of the carbonyl group and the oxygen site of water. Hydration effects on the stabilisation of the DMF molecule in aqueous solution have been investigated using statistical perturbation theory. The results show that energetic changes involved in the hydration process are not strong enough to stabilise another configuration of DMF than the planar one.
Resumo:
The biggest advantage of plasma immersion ion implantation (PIII) is the capability of treating objects with irregular geometry without complex manipulation of the target holder. The effectiveness of this approach relies on the uniformity of the incident ion dose. Unfortunately, perfect dose uniformity is usually difficult to achieve when treating samples of complex shape. The problems arise from the non-uniform plasma density and expansion of plasma sheath. A particle-in-cell computer simulation is used to study the time-dependent evolution of the plasma sheath surrounding two-dimensional objects during process of plasma immersion ion implantation. Before starting the implantation phase, steady-state nitrogen plasma is established inside the simulation volume by using ionization of gas precursor with primary electrons. The plasma self-consistently evolves to a non-uniform density distribution, which is used as initial density distribution for the implantation phase. As a result, we can obtain a more realistic description of the plasma sheath expansion and dynamics. Ion current density on the target, average impact energy, and trajectories of the implanted ions were calculated for three geometrical shapes. Large deviations from the uniform dose distribution have been observed for targets with irregular shapes. In addition, effect of secondary electron emission has been included in our simulation and no qualitative modifications to the sheath dynamics have been noticed. However, the energetic secondary electrons change drastically the plasma net balance and also pose significant X-ray hazard. Finally, an axial magnetic field has been added to the calculations and the possibility for magnetic insulation of secondary electrons has been proven.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Monte Carlo simulation methods were used in order to study the conformational properties of partially ionized polyelectrolyte chains with Debye-Hückel screening in 1:1 electrolyte solution at room temperature. Configurational properties such as the distributions of probability for the square end to end distances, for the square radii of gyration and for the angles between polyion bonds were investigated as a function of the chain ionization and the salt concentration. © 1993.
Resumo:
Today, the trend within the electronics industry is for the use of rapid and advanced simulation methodologies in association with synthesis toolsets. This paper presents an approach developed to support mixed-signal circuit design and analysis. The methodology proposed shows a novel approach to the problem of developing behvioural model descriptions of mixed-signal circuit topologies, by construction of a set of subsystems, that supports the automated mapping of MATLAB®/SIMULINK® models to structural VHDL-AMS descriptions. The tool developed, named MS 2SV, reads a SIMULINK® model file and translates it to a structural VHDL-AMS code. It also creates the file structure required to simulate the translated model in the System Vision™. To validate the methodology and the developed program, the DAC08, AD7524 and AD5450 data converters were studied and initially modelled in MATLAB®/ SIMULINK®. The VHDL-AMS code generated automatically by MS 2SV, (MATLAB®/SIMULINK® to System Vision™), was then simulated in the System Vision™. The simulation results show that the proposed approach, which is based on VHDL-AMS descriptions of the original model library elements, allows for the behavioural level simulation of complex mixed-signal circuits.
Resumo:
This paper presents a distribution feeder simulation using VHDL-AMS, considering the standard IEEE 13 node test feeder admitted as an example. In an electronic spreadsheet all calculations are performed in order to develop the modeling in VHDL-AMS. The simulation results are compared in relation to the results from the well knowing MatLab/Simulink environment, in order to verify the feasibility of the VHDL-AMS modeling for a standard electrical distribution feeder, using the software SystemVision™. This paper aims to present the first major developments for a future Real-Time Digital Simulator applied to Electrical Power Distribution Systems. © 2012 IEEE.
Digital filtering of oscillations intrinsic to transmission line modeling based on lumped parameters
Resumo:
A correction procedure based on digital signal processing theory is proposed to smooth the numeric oscillations in electromagnetic transient simulation results from transmission line modeling based on an equivalent representation by lumped parameters. The proposed improvement to this well-known line representation is carried out with an Finite Impulse Response (FIR) digital filter used to exclude the high-frequency components associated with the spurious numeric oscillations. To prove the efficacy of this correction method, a well-established frequency-dependent line representation using state equations is modeled with an FIR filter included in the model. The results obtained from the state-space model with and without the FIR filtering are compared with the results simulated by a line model based on distributed parameters and inverse transforms. Finally, the line model integrated with the FIR filtering is also tested and validated based on simulations that include nonlinear and time-variable elements. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Educação para a Ciência - FC
Resumo:
This paper aims to present, using a set of guidelines, how to apply the conservative distributed simulation paradigm (CMB protocol) to develop efficient applications. Using these guidelines, even a user with little experience on distributed simulation and computer architecture can have good performance on distributed simulations using conservative synchronization protocols for parallel processes.The set of guidelines is focus on a specific application domain, the performance evaluation of computer systems, considering models with coarse granularity and few logical processes and running over two platforms: parallel (high performance communication environment) and distributed (low performance communication environment).
Resumo:
The behavior of plasma and sheath characteristics under the action of an applied magnetic field is important in many applications including plasma probes and material processing. Plasma immersion ion implantation (PIII) has been developed as a fast and efficient surface modification technique of complex shaped three-dimensional objects. The PIII process relies on the acceleration of ions across a high-voltage plasma sheath that develops around the target. Recent studies have shown that the sheath dynamics is significantly affected by an external magnetic field. In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded cylindrical vacuum chamber filled with uniform nitrogen plasma. An axial magnetic field is created by a solenoid installed inside the cylindrical target. The computer code employs the Monte Carlo method for collision of electrons and neutrals in the plasma and a particle-in-cell (PIC) algorithm for simulating the movement of charged particles in the electromagnetic field. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that a high-density plasma region is formed around the cylindrical target due to the intense background gas ionization by the magnetized electrons drifting in the crossed ExB fields. An increase of implantation current density in front of high density plasma region is observed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Recent studies have demonstrated that the sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field. In this paper, a two-dimensional computer simulation of a magnetic-field-enhanced PHI system is described. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform molecular nitrogen plasma. A static magnetic field is created by a small coil installed inside the target holder. The vacuum chamber is filled with background nitrogen gas to form a plasma in which collisions of electrons and neutrals are simulated by the Monte Carlo algorithm. It is found that a high-density plasma is formed around the target due to the intense background gas ionization by the magnetized electrons drifting in the crossed E x B fields. The effect of the magnetic field intensity, the target bias, and the gas pressure on the sheath dynamics and implantation current of the PHI system is investigated.
Resumo:
This work focuses on the dynamic modeling of a flexible robotic manipulator with two flexible links and two revolute joints, which rotates in the horizontal plane. The dynamic equations are derived using the Newton-Euler formulation and the finite element method, based on elementary beam theory. Computer simulation results are presented to illustrate this study. The dynamic model becomes necessary for use in future design and control applications.
Resumo:
An algorithm for adaptive IIR filtering that uses prefiltering structure in direct form is presented. This structure has an estimation error that is a linear function of the coefficients. This property greatly simplifies the derivation of gradient-based algorithms. Computer simulations show that the proposed structure improves convergence speed.
Resumo:
This work presents the design and procedure of a DC-to-AC converter using a ZVS Commutation Cell developed by Barbi and Martins (1991) and applied to the family of DC-to-DC PWM converters. Firstly, we show the cell applied to buck converter. The stages of operation and the main current and voltage equations of the resonant devices are presented. Next, we adapt the converter to the regenerative operation mode. Hence, the full bridge converter at low frequency operation is conected on the DC-to-DC stage (at high frequency) output ends (Seixas, 1993). Commutation of zero voltage for all switches, PWM at constant frequency and neither overvoltage nor additional current stress are observed by digital simulation. The design example and experimental results obtained by prototype rated at 275 V, 1 kW and 40 kHz are also presented.
Resumo:
This paper presents a viscous three-dimensional simulations coupling Euler and boundary layer codes for calculating flows over arbitrary surfaces. The governing equations are written in a general non orthogonal coordinate system. The Levy-Lees transformation generalized to three-dimensional flows is utilized. The inviscid properties are obtained from the Euler equations using the Beam and Warming implicit approximate factorization scheme. The resulting equations are discretized and approximated by a two-point fmitedifference numerical scheme. The code developed is validated and applied to the simulation of the flowfield over aerospace vehicle configurations. The results present good correlation with the available data.