24 resultados para Devitrification
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Erbium L-3-edge extended x-ray absorption fine structure (EXAFS) measurements were performed on rare earth doped fluorosilicate and fluoroborate glasses and glass ceramics. The well known nucleating effects of erbium ions for the crystallization of cubic lead fluoride (based on x-ray diffraction measurements) and the fact that the rare earth ions are present in the crystalline phase (as indicated by Er3+ emission spectra) seem in contradiction with the present EXAFS analysis, which indicates a lack of medium range structural ordering around the Er3+ ions and suggests that the lead fluoride crystallization does not occur in the nearest neighbor distance of the rare earth ion. Molecular dynamics simulations of the devitrification process of a lead fluoride glass doped with Er3+ ions were performed, and results indicate that Er3+ ions lower the devitrification temperature of PbF2, in good agreement with the experimental results. The genuine role of Er3+ ions in the devitrification process of PbF2 has been investigated. Although Er3+ ions could indeed act as seeds for crystallization, as experiments suggest, molecular dynamics simulation results corroborate the experimental EXAFS observation that the devitrification does not occur at its nearest neighbor distance. (c) 2008 American Institute of Physics.
Resumo:
The vitrification and devitrification features of lead fluoride are investigated by means of molecular dynamic simulations. The influence of heating rate on the devitrification temperature as well as the dependence of the glass properties on its thermal history, i.e., the cooling rate employed, is identified. As expected, different glasses are obtained when the cooling rates differ. Diffusion coefficient analysis during heating of glass and crystal, indicates that the presence of defects on the glassy matrix favors the transition processes from the ionic to a superionic state, with high mobility of fluorine atoms, responsible for the high anionic conduction of lead fluoride. Nonisothermal and isothermal devitrification processes are simulated in glasses obtained at different cooling rates and structural organizations occurring during the heat treatments are clearly observed. When a fast cooling rate is employed during the glass formation, the devitrification of a single crystal (limited by the cell dimensions) is observed, while the glass obtained with slower cooling rate, allowing relaxations and organization of various regions on the glass bulk during the cooling process, devitrifies in more than one crystalline plane. (C) 2004 American Institute of Physics.
Resumo:
In this work molecular dynamics simulations were performed to reproduce the kinetic and thermodynamic transformations occurring during melt crystallization, vitrification, and glass crystallization (devitrification) of PbF2. Two potential parameters were analyzed in order to access the possibility of modeling these properties. These interionic potentials are models developed to describe specific characteristic of PbF2, and thermodynamic properties were well reproduced by one of them, while the other proved well adapted to simulate the crystalline structure of this fluoride. By a modeled nonisothermal heat treatment of the glass, it was shown that the devitrification of a cubic structure in which the Pb-Pb distances are in good agreement with theory and experiment. (C) 2002 American Institute of Physics.
Resumo:
The understanding of the kinetics of devitrification of a glass is important for anticipating its stability in a particular purpose, such as fiber-drawing processes. The crystallization kinetics of (BaF2)16(ZnF2)20(SrF 2)20(NaF)2 (GaF3)5(InF3)36(GdF 3)1 glass prepared by quenching were studied by differential scanning calorimetry (DSC). Avrami's exponent (n) obtained by a non-isothermal method was 4.3 for a solid and 2.4 for a powdered sample. According to the classical interpretation of n, these magnitudes correspond to an interface-controlled crystal growth and a diffusion-controlled crystal growth, respectively. The activation energies for crystallization (E) was 62 ± 1 kJ/mol for solid glass and 245 ± 2 kJ/mol for powdered glass. These results are discussed in terms of glass particle size. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The kinetics of crystallization in an indium fluoride-based glass was studied by a non-isothermal method using differential scanning calorimetry. The experiments led to an Avrami's exponent of 4.6 for solid glass and 2.2 for a powdered sample. The apparent activation energy for crystallization was found to be 130 kJ/mol for solid glass and 354 kJ/mol for the powder. These results express the profound effect of glass particle size on those kinetic parameters, as different crystallization mechanisms take place during sample heating.
Resumo:
In the present work, tellurite 20Li(2)O-80TeO(2) glasses were prepared with identical nominal composition under different glass-forming histories to produce a stressed and stress-free samples. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) techniques were used to study the effects of the glass-forming histories on the thermal and structural properties of these glasses. The gamma-TeO2 (metastable), alpha-TeO2 and alpha-Li2Te2O5 phases were identified during the controlled devitrification in these glasses. The mestastable character of the gamma-TeO2 phase was clearly observed in the glass under stress but this effect is not so clear in the stress-free glass. The gamma-TeO2 and alpha-TeO2 phases crystallizes during the initial stages of crystallization in both studied glasses while the alpha-Li2Te2O5 phase crystallize in the final stages of the crystallization. The activation energies and Avrami exponent were calculated for both studied glasses with different particle size leading to E-3 > E-2 > E-1 for stressed glass and E-3 > E-2 approximate to E-1 for stress-free glass, where E-1, E-2 and E-3 were associated to the gamma-TeO2, alpha-TeO2 and alpha-Li2Te2O5 phases, respectively. The observed distinct (n) over bar (1) < <(n)over bar>(2) < <(n)over bar>(3) in both glasses is an indicative that nucleation and growth takes place by more than one mechanism in the early stages of the crystallization. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Crystalline lead-pyrophosphate precursor was prepared in aqueous solution from lead nitrate and phosphoric acid and characterized by X-ray diffraction, thermogravimetry and Raman scattering. This crystalline lead-phosphate was then used to prepare glass samples in the binary system Pb(2)P(2)O(7)-WO(3). Dependence of WO(3) content on thermal, structural and optical properties were investigated by thermal analysis (DSC), Raman spectroscopy, UV-visible and near-infrared absorption and M-Line technique to access refractive index values. Incorporation of WO(3) in the lead-pyrophosphate matrix enhances the glass transition temperature and thermal stability against devitrification, favors formation of P-O-W bonds and WO(6) clusters. In addition, optical properties are strongly modified with a redshift of the optical bandgap with WO(3) incorporation as well as an increase of the refractive index from 1.89 to 2.05 in the visible. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Their extended transparency in the IR makes them attractive for use as optical fibers for CO laser power delivery and optical amplification. This paper firstly describes the spectacular stabilizing effect of MgF2 on the binary system InF3-BaF2. The investigation of the InF3-BaF2-MgF2 system led to samples up to 5mm in thickness. Further optimization of this system was achieved by incorporation of limited amounts of other fluorides and resulted in increased resistence to devitrification. The second approach of this work was concerned to the investigation of the pseudo-ternary system InF3-GdF3-GaF3 at constant concentrations of ZnF2-SrF2-BaF2-NaF. Several compositions were studied in this system. The samples presented a better thermal stability when compared to other families of fluoride glasses. Therefore, these glasses seem to be very promising for the fabrication of special optical fibers. Thermal data are reported.
Resumo:
Phase transitions of freeze-dried persimmon in a large range of moisture content were determined by differential scanning calorimetry (DSC). In order to study this transitions at low and intermediate moisture content domains, samples were conditioned by adsorption at various water activities (a(w) = 0.11-0.90) at 25 degreesC. For the high moisture content region, samples were obtained by water addition. At a(w) less than or equal to 0.75 two glass transitions were visible, with T(g) decreasing with increasing water activity due to water plasticizing effect. The first T(g) is due to the matrix formed by sugars and water, the second one, less visible and less plasticized by water, is probably due to macromolecules of the fruit pulp. At a(w) between 0.80 and 0.90 a devitrification peak appeared after T(g) and before T(m). At this moisture content range, the Gordon-Taylor model represented satisfactorily the matrix glass transition curve. At the higher moisture content range (a(w) > 0.90), the more visible phenomenon was the ice melting. T(g) appeared less visible because the enthalpy change involved in glass transition is practically negligible in comparison with the latent heat of melting. In the high moisture content domain T(g) remained practically constant around T(g)' (-56.6 degreesC). (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
New glass forming systems based on Sb2O3-SbPO4 has been explored. These glasses present higher thermal stability against devitrification and higher refractive index than chalcogenide glasses. Under irradiation, using Ar-laser 350nm wavelength and 50 mW power density, change on the coloration is observed. Structural and electronic modifications around Sb cations induced by such treatment have been characterized by XANES measurements at the L-Sb edges. on the one hand, XANES spectra, at the LJ edge, show a decrease of the coordination number for Sb atoms induced by exposure to light indicating a breaking of Sb-O bonds in the glassy network. on the other hand, XANES spectra, at the Lt edge, suggest a change in the oxidation state of Sb atoms. These modifications associated to the photodarkening of the glass is reversible either after a couple of days or after heating the glass at the glass transition temperature, T-g.
Resumo:
In this paper a modified chalcogenide glass was studied by X-ray powder diffraction, differential thermal analysis, infrared and Raman scattering spectroscopies. The study of this new matrix opens new perspectives to fabricate Pr3+-doped fibers to operate as an optical amplifier in the 1.3 mum telecommunications window. The Pr3+-doped 70Ga(2)S(3)-30La(2)S(3) glass was modified through the substitution of La2S3 by La2O3, which improves the thermal stability of these glasses without any modification of phonon energy. The possibility to pull a fiber from this glass system without any devitrification is easily achieved.
Resumo:
Glasses in the binary system (100 - x)SbPO4-xWO3 (20 <= x <= 60, x in mol%) have been prepared and characterized. Differential thermal analysis (DTA) shows that the glass transition temperature, T-g increases from 412 degrees C, for samples containing 20 mol% of WO3 to 481 degrees C observed for glass containing 60 mol%. Sample containing 40 mol% in WO3 were observed to be the most stable against devitrification. The structural organization of the glasses has been studied by using Fourier transform infra-red (FTIR), Raman, P-31 Magic angle spinning (MAS) and spin echo nuclear magnetic resonance (NMR) spectroscopies. Results suggest two distinct networks comprising the glass structure, one with high SbPO4 content and the other characteristic of the highest WO3 content samples. The glasses present photochromic properties. Colour changes are observed for samples after exposure to ultraviolet or visible laser light. XANES, at L-1 absorption edge of tungsten, suggests partial reduction from W6+ to W5+ species during the laser irradiation. The photochromic effects and the colour changes, promoted by laser excitation, are reversible and easily removed by heat for during 1 h at 150 degrees C. Subsequent 'write/erase' cycles can be done without degradation of the glasses. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the stabilizing effect of MgF2 on the binary system InF3-BaF2. A complete investigation of the In-Ba-Mg system led to samples up to 5 mm in thickness. Further optimization of this system was achieved by incorporation of other fluorides, resulting in increased resistance to devitrification. Thermal and optical data are reported.
Resumo:
Crystallization of binary InF3-MF2 and GaF3-MF2 (where M = Ba, Sr and Ca) glasses was studied. Characteristic temperatures and kinetic parameters E (activation energy) and n (Avrami exponent) were obtained. Stability against devitrification is discussed in terms of the above cited parameters and also of some others parameters proposed in literature. Optical properties (IR and upconversion emissions) are reported in different crystallized samples containing Nd3+. The main observation is that up conversion emission presents an enhanced sensibility to crystallization when compared to conventional emission. © 1997 Published by Elsevier Science B.V.