536 resultados para Dental curing lights
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study evaluated the Knoop hardness of a dual-cured resin cement (Rely-X ARC) activated solely by chemical reaction (control group) or by chemical / physical mode, light-cured through a 1.5 mm thick ceramic (HeraCeram) or composite (Artglass) disc. Light curing was carried out using conventional halogen light (XL2500) for 40 s (QTH); light emitting diodes (Ultrablue Is) for 40 s (LED); and Xenon plasma arc (Apollo 95E) for 3 s (PAC). Bovine incisors had their buccal face flattened and hybridized. On this surface a rubber mold (5 mm in diameter and 1 mm in height) was bulk filled with the resin cement. A polyester strip was seated for direct light curing or through the discs of veneering materials. After dry storage in the dark (24 h 37°C), the samples (n = 5) were sectioned for hardness (KHN) measurements, taken in a microhardness tester (50 gF load 15 s). The data were statistically analyzed by ANOVA and Tukey's test (α = 0.05). The cement presented higher Knoop hardness values with Artglass for QTH and LED, compared to HeraCeram. The control group and the PAC/Artglass group showed lower hardness values compared to the groups light-cured with QTH and LED. PAC/HeraCeram resulted in the worst combination for cement hardness values. © 2009 Sociedade Brasileira de Pesquisa Odontológica.
Resumo:
AIM: This study evaluated the temperature rise of the adhesive system Single Bond (SB) and the composite resins Filtek Z350 flow (Z) and Filtek Supreme (S), when polymerized by light-emitting diode (LED XL 3000) and quartz-tungsten halogen (QTH Biolux). METHODS: Class V cavities (3 yen2 mm) were prepared in 80 bovine incisors under standardized conditions. The patients were divided as follows: G1: Control; G2: SB; G3: SB + Z; G4: SB + S. The groups were subdivided into two groups for polymerization (A: QTH, B: LED). Light curing was performed for 40 s and measurement of temperature changes during polymerization was performed with a thermocouple positioned inside the pulp chamber. Data were statistically analyzed using ANOVA and Tukey tests. RESULTS: The factors material (P<0.00001) and curing unit (P<0.00001) had significant influence on temperature rise. The lowest temperature increase (0.15 degrees C) was recorded in G2 B and the highest was induced in G1 A (0.75 degrees C, P<0.05). In all groups, lower pulp chamber temperature measurements were obtained when using LED compared to QTH (P<0.05). CONCLUSION: QTH caused greater increases in tooth temperature than LED. However, both sources did not increase pulpal temperature above the critical value that may cause pulpal damage.
Resumo:
This study evaluated the Knoop hardness and polymerization depth of a dual-cured resin cement, light-activated at different distances through different thicknesses of composite resin. One bovine incisor was embedded in resin and its buccal surface was flattened. Dentin was covered with PVC film where a mold (0.8-mm-thick and 5 mm diameter) was filled with cement and covered with another PVC film. Light curing (40 s) was carried out through resin discs (2, 3, 4 or 5 mm) with a halogen light positioned 0, 1, 2 or 3 mm from the resin surface. After storage, specimens were sectioned for hardness measurements (top, center, and bottom). Data were subjected to split-plot ANOVA and Tukey's test (α=0.05). The increase in resin disc thickness decreased cement hardness. The increase in the distance of the light curing tip decreased hardness at the top region. Specimens showed the lowest hardness values at the bottom, and the highest at the center. Resin cement hardness was influenced by the thickness of the indirect restoration and by the distance between the light-curing unit tip and the resin cement surface.
Resumo:
The aim of this study was to evaluate the effects of different light-curing units and resin cement curing types on the bond durability of a feldspathic ceramic bonded to dentin. The crowns of 40 human molars were sectioned, exposing the dentin. Forty ceramic blocks of VITA VM7 were produced according to the manufacturer's recommendations. The ceramic surface was etched with 10% hydrofluoric acid/60s and silanized. The dentin was treated with37% phosphoric acid/15s, and the adhesive was applied. The ceramic blocks were divided and cemented to dentin according to resin cement/RC curing type(dual-and photocured), light-curing unit (halogen light/QTH and LED), and storage conditions (dry and storage/150 days + 12,000 cycles/thermocycling). All blocks were stored in distilled water (37°C/24h) and sectioned (n = 10): G1-QTH + RC Photo, G2-QTH + RC Dual, G3-LED + RC Photo, G4-LED + RC Dual. Groups G5, G6, G7, and G8 were obtained exactly as G1 through G4, respectively, and then stored and thermocycled. Microtensile bond strength tests were performed (EMIC), and data were statistically analyzed by ANOVA and Tukey's test (5%). The bond strength values (MPa) were: G1-12.95 (6.40)ab; G2-12.02 (4.59)ab; G3-13.09 (5.62)ab; G4-15.96 (6.32)a; G5-6.22 (5.90)c; G6-9.48 (5.99)bc; G7-12.78 (11.30)ab; and G8-8.34 (5.98)bc. The same superscript letters indicate no significant differences. Different light-curing units affected the bond strength betweenceramic cemented to dentin when the photocured cement was used, and only after aging (LED>QTH). There was no difference between the effects of dual-and photo-cured resin-luting agents on the microtensile bond strength of the cement used in this study.
Resumo:
The present study aimed to assess the influence of curing distance on the loss of irradiance and power density of four curing light devices. The behavior in terms of power density of four different dental curing devices was analyzed (Valo, Elipar 2, Radii-Cal, and Optilux-401) using three different distances of photopolymerization (0 mm, 4 mm, and 8 mm). All devices had their power density measured using a MARC simulator. Ten measurements were made per device at each distance. The total amount of energy delivered and the required curing time to achieve 16 J/cm2 of energy was also calculated. Data were statistically analyzed with one-way analysis of variance and Tukey’s tests (p < 0.05). The curing distance significantly interfered with the loss of power density for all curing light devices, with the farthest distance generating the lowest power density and consequently the longer time to achieve an energy density of 16 J/cm2 (p < 0.01). Comparison of devices showed that Valo, in extra power mode, showed the best results at all distances, followed by Valo in high power mode, Valo in standard mode, Elipar 2, Radii-Cal, and Optilux-401 halogen lamp (p < 0.01). These findings indicate that all curing lights induced a significant loss of irradiance and total energy when the light was emitted farther from the probe. The Valo device in extra power mode showed the highest power density and the shortest time to achieve an energy density of 16 J/cm2 at all curing distances.
Resumo:
The aim of this study was to evaluate the effect of radiotherapy on the radiopacity and flexural strength of composite resin. Forty Z250 composite resin specimens were polymerized using a halogen light-curing unit and divided into 5 groups, in accordance with the radiotherapy dose: G1- without irradiation, G2- 30 Gy, G3- 40 Gy, G4- 50 Gy and GS- 60 Gy Digital images were obtained using a GE 100 X-ray. Radiopacity values were obtained with the Digora digital imaging system and the flexural strength was evaluated with an EMIC universal testing machine. Data were submitted to ANOVA and Tukey 's test. G1 presented the highest radiopacity value, followed by G3, G5, G4 and G2. For flexural strength, G1 presented the lowest value, followed by G2, G5, G3 and G4. Differences were no significant (p>0.05). The commonly used dosage of radiotherapy treatment, did not cause alteration in the radiopacity and flexural strength of resin-based composites.
Resumo:
The aim of this in vitro study was to compare the photoactivation effects of QTH (Quartz-Tungsten-Halogen) and LED (Light-Emitting Diode) on the SBS (Shear Bond Strength) of orthodontic brackets at different debond times. Seventy-two bovine lower incisors were randomly divided into two groups according to the photoactivation system used (QTH or LED). The enamel surfaces were conditioned with Transbond self-etching primer, and APC (Adhesive Pre-Coated) brackets were used in all specimens. Group I was cured with QTH for 20 s and Group II with LED for 10 s. Both groups were subdivided according to the different experimental times after bonding (immediately, 24 h and 7 days). The specimens were tested for SBS and the enamel surfaces were analyzed according to the Adhesive Remnant Index (ARI). The statistical analysis included the Tukey's test to evaluate the main effects of photoactivation and debond time on SBS. The Chi-square test was used to compare the ARI values found for each group, and no statistically significant difference was observed. The debond time of 7 days for QTH photoactivation showed statistically greater values of SBS when compared to the immediate and 24 h periods. There was no statistically significant difference between the QTH and LED groups immediately and after the 24 h period. In conclusion, bonding orthodontic brackets with LED photoactivation for 10 s is suggested because it requires a reduced clinical chair time.
Resumo:
This study evaluated the effect of different light energy densities on conversion degree (CD) and Knoop hardness number (KHN) of RelyX ARC (RLX) resin cement. After manipulation according to the manufacturer's instructions, RLX was inserted into a rubber mold (0.8 mm X 5 mm) and covered with a Mylar strip. The tip of the lightcuring unit (LCU) was positioned in contact with the Mylar surface. Quartz-tungsten-halogen (QTH) and light-emitting diode (LED) LCUs with light densities of 10, 20 and 30 J/cm2 were used to light-cure the specimens. After light curing, the specimens were stored dry in lightproof containers at 37°C. After 24 hours, the CD was analyzed by FT-Raman and, after an additional 24-hours, samples were submitted to Knoop hardness testing. The data of the CD (%) and KHN were submitted to two-way ANOVA and the Tukey's test (α=0.05). QTH and LED were effective light curing units. For QTH, there were no differences among the light energy densities for CD or KHN. For LED, there was a significant reduction in CD with the light energy density set at 10 J/cm2. KHN was not influenced by the lightcuring unit and by its light energy density. © Operative Dentistry.
Resumo:
Authors - Magno AFF, Martins RP, Vaz LG, Martins LP Objectives - Evaluate the shear bond strength (SBS) and the adhesive remnant index (ARI) of indirect bonded lingual brackets using xenon plasma arc light, light-emitting diode (LED) and conventional quartz-tungsten-halogen light. Material and Methods - Lingual brackets were bonded indirectly to 60 premolars divided to three groups according to the curing light used: Group 1, plasma arc for 6 s; Group 2, LED for 10 s; and Group 3, halogen light for 40 s. After bonding, the specimens were subjected to a shear force until debonding. The debonding pattern was assessed and classified according to the ARI scores. The mean shear bond strengths were accessed by anova followed by the Student-Newman-Keuls test for multiple comparisons. ARI scores were assessed using the chi-square test. Results - The three groups showed significant differences (p < 0.001), with the averages of group 1 < group 2 < group 3. Groups showed no differences regarding ARI scores. Conclusion - Bonding lingual brackets indirectly with plasma arc, during 60% of the time used for the LED, produced lower SBS than obtained with the latter. Using LED during 25% of the time of the halogen light produced lower SBS than obtained with the latter. These differences did not influence the debonding pattern and are clinically acceptable according to the literature. © 2010 John Wiley & Sons A/S.
Resumo:
Purpose: The use of different light sources as an adjunct to in-office bleaching has been questioned. Thus, the aim of this study was to evaluate the color changes of teeth after application of bleaching techniques with different products, with and without activation by a LED-laser system. Methods: Twenty-four bovine teeth surfaces were submitted to three bleaching techniques with two commercially available 35% hydrogen peroxide bleaching agents (n=8). The specimens were immersed in red wine for 48 h at 37°C and submitted to the bleaching techniques. Color changes were measured before and after staining as well as immediately after and 24 h after the bleaching treatments, with two different methods of color evaluation, software ScanWhite V1.1 and intra-oral spectrophotometer (Vita Easyshade). Data were analyzed by ANOVA and Kruskal-Wallis test. Results: The statistical analysis showed that there was no statistically significant difference at 5% of significance level between the different groups, independently of the evaluation time, evaluation methods or the use of LED-laser systems. Conclusion: The results suggested that the use of light in the bleaching techniques did not influence the color changes. Copyright: © 2011 Roberto et al.
Resumo:
Aim: This study evaluates bond strength between dentin and composite using adhesives with different solvents to dry and wet dentin. Materials and methods: Ninety bovine incisors were used; the vestibular surfaces were worn by the exposure of an area with a diameter of 4 mm of dentin. The specimens were divided into 6 groups, according to the type of adhesive used and hydratation stals: Group SB-wet: Single Bond 2 in wet dentin, Group SBdry: Single Bond 2 in dry dentin, Group SL-wet: Solobond M in wet dentin, Group SL-dry: Solobond M in dentin dry. Group XPwet: XP Bond in wet dentin, Group XP-dry: XP Bond in dentin dry. They were cut to obtain specimens in the shape of stick with 1 × 1 mm and subjected to microtensile test in universal testing machine with a cross speed of 1mm/min. The data were analyzed with ANOVA and Tukey's tests (5%). Results: ANOVA showed significant differences for surface treatment and interaction, but no difference was found for adhesive factor. The Tukey's test showed that the samples with wet dentin shown higher values of bond strength. Conclusion: The adhesive did not influence in the bond strength. The groups with wet dentin showed higher values of bond strength than groups with dry dentin.
Resumo:
Aims and objectives: The behavior of polymer-matrix composite is dependent on the degree of conversion. The aim of this study was to evaluate the degree of conversion of two resin cements following storage at 37°C immediately, 24 and 48 hours, and 7 days after light-curing by FTIR analysis. Materials and methods: The specimens were made in a metallic mold and cured with blue LED with power density of 500 mW/cm2 for 30 seconds. The specimens were pulverized, pressed with KBr and analyzed with FTIR following storage times. Statistical analysis used: ANOVA (two-way) and Tukey's post hoc. Results: To the polymer-matrix composites between 24 and 48 hours does not show a significant increase (p > 0.05), however, the highest values were found after 7 days. Conclusion: The polymer-matrix composites used in this study showed similarity on the degree of conversion and increased of according to the time of storage.