109 resultados para Delayed implantation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Purpose: The aim of this study was to evaluate the success rate of maxillary immediate nonfunctional single-tooth loaded implants used into fresh extraction sites (immediate placement condition) or healed ridge (delayed placement condition).Materials and Methods: Eighty-two dental implants were placed in the maxilla of 64 consecutive patients from Private practice office and from a specialization course in Implantology. Forty-six implants were inserted under immediate placement condition, and 36 were inserted under delayed placement condition. The criteria used to evaluate success rate were those previously described by Albrektsson and Zarb (Int J Prosthodont 1993;6: 95-105), and follow-up period ranged from 18.0 to 39.7 months.Results: Seventy-nine implants fulfilled the success rate criteria (96.3%). Moreover, differences concerning implantation condition were not significant (P = 0.33, Qui-square test): three of the failed implants were from immediate placement group (success rate of 93.5%), and none was from delayed placement group (success rate of 100.0%).Conclusion: In the present sample, no statistically significant differences were detected for immediate nonfunctional single-tooth loaded implants under immediate placement condition in comparison with those inserted under delayed placement condition; both protocols had high success rate in maxillary incisors, canines, and premolars areas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work evaluated the potential of the isoforms of methamidophos to cause organophosphorus-induced delayed neuropathy (OPIDN) in hens. In addition to inhibition of neuropathy target esterase (NTE) and acetylcholinesterase (AChE), calpain activation, spinal cord lesions and clinical signs were assessed. The isoforms (+)-, (+/-)- and (-)-methamidophos were administered at 50 mg/kg orally; tri-ortho-cresyl phosphate (TOCP) was administered (500 mg/kg, po) as positive control for delayed neuropathy. The TOCP hens showed greater than 80% and approximately 20% inhibition of NTE and AChE in hen brain, respectively. Among the isoforms of methamidophos, only the (+)-methamidophos was capable of inhibiting NTE activity (approximately 60%) with statistically significant difference compared to the control group. Calpain activity in brain increased by 40% in TOCP hens compared to the control group when measured 24h after dosing and remained high (18% over control) 21 days after dosing. Hens that received (+)-methamidophos had calpain activity 12% greater than controls. The histopathological findings and clinical signs corroborated the biochemical results that indicated the potential of the (+)-methamidophos to be the isoform responsible for OPIDN induction. Protection against OPIDN was examined using a treatment of 2 doses of nimodipine (1 mg/kg, i.m.) and one dose of calcium gluconate (5 mg/kg, iv.). The treatment decreased the effect of OPIDN-inducing TOCP and (+)-methamidophos on calpain activity, spinal cord lesions and clinical signs. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Among the difficulties found in the implementation of ISO 14001 systems, resistance to change can always be found. It is mainly a consequence of the hurry to change, loss of focus, concentration of decision making at the level of top management, arbitrary imposition of objectives and results, faulty communication, and the absence of motivational and financial incentive for change.Therefore, the main objective of this paper is to present best practices with respect to the management of organizational change due to the implementation of ISO 14001 norms in two industrial companies in the Midwest region of the State of São Paulo - Brazil. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Recent studies have demonstrated that sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field, especially in the case when the magnetic field is parallel to the workpiece surface or intersects it at small angles. In this work we report the results from two-dimensional, particle-in-cell (PIC) computer simulations of magnetic field enhanced plasma immersion implantation system at different bias voltages. The simulations begin with initial low-density nitrogen plasma, which extends with uniform density through a grounded cylindrical chamber. Negative bias voltage is applied to a cylindrical target located on the axis of the vacuum chamber. An axial magnetic field is created by a solenoid installed inside the target holder. A set of simulations at a fixed magnetic field of 0.0025 T at the target surface is performed. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that the plasma density around the cylindrical target increases because of intense background gas ionization by the electrons drifting in the crossed E x B fields. Suppression of the sheath expansion and increase of the implantation current density in front of the high-density plasma region are observed. The effect of target bias on the sheath dynamics and implantation current of the magnetic field enhanced PIII is discussed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work, an investigation was conducted on amorphous hydrogenated-nitrogenated carbon films prepared by plasma immersion ion implantation and deposition. Glow discharge was excited by radiofrequency power (13.56 MHz, 40 W) whereas the substrate-holder was biased with 25 kV negative pulses. The films were deposited from benzene, nitrogen and argon mixtures. The proportion of nitrogen in the chamber feed (R-N) was varied against that of argon, while keeping the total pressure constant (1.3 Pa). From infrared reflectance-absorbance spectroscopy it was observed that the molecular structure of the benzene is not preserved in the film. Nitrogen was incorporated from the plasma while oxygen arose as a contaminant. X-ray photoelectron spectroscopy revealed that N/C and O/C atomic ratios change slightly with R-N. Water wettability decreased as the proportion of N in the gas phase increased while surface toughness underwent just small changes. Nanoindentation measurements showed that film deposition by means of ion bombardment was beneficial to the mechanical properties of the film-substrate interface. The intensity of the modifications correlates well with the degree of ion bombardment. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This work describes an investigation of the properties of polymer films prepared by plasma immersion ion implantation and deposition. Films were synthesized from low pressure benzene glow discharges, biasing the samples with 25 W negative pulses. The total energy deposited in the growing layer was varied tailoring simultaneously pulse frequency and duty cycle. The effect of the pulse characteristics on the chemical composition and mechanical properties of the films was studied by X-ray photoelectron spectroscopy (XPS) and nanoindentation, respectively. Analysis of the deconvoluted C 1s XPS peaks demonstrated that oxygen was incorporated in all the samples. The chemical modifications induced structural reorganization, characterized by chain cross-linking and unsaturation, affecting material properties. Hardness and plastic resistance parameter increased under certain bombardment conditions. An interpretation is proposed in terms of the total energy delivered to the growing layer. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The behavior of plasma and sheath characteristics under the action of an applied magnetic field is important in many applications including plasma probes and material processing. Plasma immersion ion implantation (PIII) has been developed as a fast and efficient surface modification technique of complex shaped three-dimensional objects. The PIII process relies on the acceleration of ions across a high-voltage plasma sheath that develops around the target. Recent studies have shown that the sheath dynamics is significantly affected by an external magnetic field. In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded cylindrical vacuum chamber filled with uniform nitrogen plasma. An axial magnetic field is created by a solenoid installed inside the cylindrical target. The computer code employs the Monte Carlo method for collision of electrons and neutrals in the plasma and a particle-in-cell (PIC) algorithm for simulating the movement of charged particles in the electromagnetic field. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that a high-density plasma region is formed around the cylindrical target due to the intense background gas ionization by the magnetized electrons drifting in the crossed ExB fields. An increase of implantation current density in front of high density plasma region is observed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Polymer films, deposited from acetylene and argon plasma mixtures, were bombarded with 150 keV He+ ions, varying the fluence, Phi, from 10(18) to 10(21) ions/m(2). Molecular structure and optical gap of the samples were investigated by infrared and ultraviolet-visible spectroscopies, respectively. Two-point probe was employed to determine the electrical resistivity while hardness was measured by nanoindentation technique. It was verified modification of the molecular structure and composition of the films. There was loss of H and increment in the concentration of unsaturated carbon bonds with Phi. Optical gap and electrical resistivity decreased while hardness increased with Phi. Interpretation of these results is proposed in terms of chain crosslinking and unsaturation. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Ti-6Al-4V alloy is one of the most frequently used Ti alloys with diverse applications in aerospace and biomedical areas due to its favorable mechanical properties, corrosion resistance and biocompatibility. Meanwhile, its surface can stiffer intense corrosion caused by wear processes due to its poor tribological properties. Thus in the present study, PIII processing of Ti-6Al-4V alloy was carried out to evaluate its corrosion resistance in 3.5% NaCl solution. Two different sets of Ti-6Al-4V samples were PIII treated, varying the plasma gases and the treatment time. The corrosion behavior is correlated with the surface morphology, and the nitrogen content. SEM micrographs of the untreated sample reveal a typical two-phase structure. PIII processing promotes surface sputtering and the surface morphology is completely different for samples treated with N-2/H-2 mixture and N-2 only. The highest penetration of nitrogen (similar to 88 nm), corresponding to 33% of N-2 was obtained for the sample treated with N-2/H-2 mixture for 1:30 h. The corrosion behavior of the samples was investigated by a potentiodynamic polarization method. A large passive region of the polarization curves (similar to 1.5 V), associated with the formation of a protective film, was observed for all samples. The passive current density (similar to 3 x 10(-6) A cm(-2)) of the PIII-treated Ti-6Al-4V samples is about 10 times higher than for the untreated sample. This current value is still rather low and maintains good corrosion resistance. The anodic branches of the polarization curves for all treated Ti-6Al-4V samples demonstrate also that the oxide films break down at approximately 1.6 V, forming an active region. Although the sample treated by N-2/H-2 mixture for 1.30 It has thicker nitrogen enriched layer, better corrosion resistance is obtained for the PIII process performed with N, gas only. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Surfaces of silicon wafers implanted with N and C, respectively, and aluminum 5052 implanted with N alone by plasma immersion ion implantation WHO were probed by a nanoindentor and analyzed by the contact-angle method to provide information on surface nanohardness and wettability. Silicon nitride and silicon carbide are important ceramic materials for microelectronics, especially for high-temperature applications. These compounds can be synthesized by high-dose ion implantation. The nanohardness of a silicon sample implanted with 12-keV nitrogen PIII (with 3 X 10(17) cm(-2) dose) increased by 10% compared to the unimplanted sample, in layers deeper than the regions where the formation of the Si,N, compound occurred. A factor of 2.5 increase in hardness was obtained for C-implanted Si wafer at 35 keV (with 6 X 10(17) cm(-2) dose), again deeper than the SiC-rich layer, Both compounds are in the amorphous state and their hardness is much lower than that of the crystalline compounds, which require an annealing process after ion implantation. In the same targets, the contact angle increased by 65% and 35% for N- and C-implanted samples, respectively. Compared to the Si target, the nitrogen PIII-irradiated Al 5052 (wish 15 keV) showed negligible change in its hydrophobic character after ion implantation. Its near-surface nanohardness measurement showed a slight increase for doses of 1 X 10(17) cm(-2). We have been searching for an AlN layer of the order of 1000 A thick, using such a low-energy PIII process, but oxide formation during processing has precluded its synthesis. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Benzene plasma polymer films were bombarded with Ar ions by plasma immersion ion implantation. The treatments were performed using argon pressure of 3 Pa and 70 W of applied power. The substrate holder was polarized with high voltage negative pulses (25 kV, 3 Hz). Exposure time to the immersion plasma, t, was varied from 0 to 9000 s. Optical gap and chemical composition of the samples were determined by ultraviolet-visible and Rutherford backscattering spectroscopies, respectively. Film wettability was investigated by the contact angle between a water drop and the film surface. Nanoindentation technique was employed in the hardness measurements. It was observed growth in carbon and oxygen concentrations while there was decrease in the concentration of H atoms with increasing t. Furthermore, film hardness and wettability increased and the optical gap decreased with t. Interpretation of these results is proposed in terms of the chain crosslinking and unsaturation. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Electrochemical corrosion measurements of AISI H13 steel treated by Pill process in 3.5% (wt) NaCl solution were investigated. So far the corrosion behavior of AISI H 13 steel by Pill has not been studied. The electrochemical results are correlated with the surface morphology, nitrogen content and hardness of the nitride layer. Ion implantation of nitrogen into H 13 steel was carried out by Pill technique. SEM examination revealed a generalized corrosion and porosity over all analyzed sample surfaces. Penetration of nitrogen reaching more than 20 gm was achieved at 450 degrees C and hardness as high as 1340 HV (factor of 2.7 enhancement over standard tempered and annealed H 13) was reached by a high power, 9 h Pill treatment. The corrosion behavior of the samples was studied by potentiodynamic polarization method. The noblest corrosion behavior was observed for the samples treated by PIII at 450 degrees C, during 9 h. Anodic branches of polarization curves of PIII processed samples show a passive region associated with the formation of a protective film. The passive region current density of PIII treated H13 samples (3.5 x 10(-6) A/cm(2)) is about 270 times lower than the one of untreated specimens, which demonstrates the higher corrosion resistance for the Pill treated H 13 samples. (c) 2007 Elsevier B.V. All rights reserved.