8 resultados para Delay equations
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We are concerned with the Kaldor's trade cycle model under the effect of a delay which represents a gestation lag between a decision of investment and its effect on the capital stock. Taking the adjustment coefficient in the goods market as a bifurcation parameter, we achieve global branches of periodic solutions. In our setting the delay is a constant inherent to the specific economy. Copyright © 2013 Watam Press.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
H-infinity control design for time-delay linear systems: a rational transfer function based approach
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we use the Hermite-Biehler theorem to establish results on the design of proportional plus integral plus derivative (PID) controllers for a class of time delay systems. Using the property of interlacing at high frequencies of the class of systems considered and linear programming we obtain the set of all stabilizing PID controllers. As far as we know, previous results on the synthesis of PID controllers rely on the solution of transcendental equations. This paper also extends previous results on the synthesis of proportional controllers for a class of delay systems of retarded type to a larger class of delay systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We characterize the existence of periodic solutions of some abstract neutral functional differential equations with finite and infinite delay when the underlying space is a UMD space. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We consider a class of functional differential equations subject to perturbations, which vary in time, and we study the exponential stability of solutions of these equations using the theory of generalized ordinary differential equations and Lyapunov functionals. We introduce the concept of variational exponential stability for generalized ordinary differential equations and we develop the theory in this direction by establishing conditions for the trivial solutions of generalized ordinary differential equations to be exponentially stable. Then, we apply the results to get corresponding ones for impulsive functional differential equations. We also present an example of a delay differential equation with Perron integrable right-hand side where we apply our result.