8 resultados para Decision variables
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This article presents an thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum exergetic manufacturing cost (EMC), based on the Second Law of Thermodynamics. The decision variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as finals conclusions.
Resumo:
This article presents a thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum Exergetic Production Cost (EPC), based on the Second Law of Thermodynamics. The variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as final output. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The aggregation theory of mathematical programming is used to study decentralization in convex programming models. A two-level organization is considered and a aggregation-disaggregation scheme is applied to such a divisionally organized enterprise. In contrast to the known aggregation techniques, where the decision variables/production planes are aggregated, it is proposed to aggregate resources allocated by the central planning department among the divisions. This approach results in a decomposition procedure, in which the central unit has no optimization problem to solve and should only average local information provided by the divisions.
Resumo:
Two fundamental processes usually arise in the production planning of many industries. The first one consists of deciding how many final products of each type have to be produced in each period of a planning horizon, the well-known lot sizing problem. The other process consists of cutting raw materials in stock in order to produce smaller parts used in the assembly of final products, the well-studied cutting stock problem. In this paper the decision variables of these two problems are dependent of each other in order to obtain a global optimum solution. Setups that are typically present in lot sizing problems are relaxed together with integer frequencies of cutting patterns in the cutting problem. Therefore, a large scale linear optimizations problem arises, which is exactly solved by a column generated technique. It is worth noting that this new combined problem still takes the trade-off between storage costs (for final products and the parts) and trim losses (in the cutting process). We present some sets of computational tests, analyzed over three different scenarios. These results show that, by combining the problems and using an exact method, it is possible to obtain significant gains when compared to the usual industrial practice, which solve them in sequence. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
Thermoeconomic Functional Analysis is a method developed for the analysis and optimal design of improvement of thermal systems (Frangopoulos, 1984). The purpose of this work is to discuss the cogeneration system optimization using a condensing steam turbine with two extractions. This cogeneration system is a rational alternative in pulp and paper plants in regard to the Brazilian conditions. The objective of this optimization consists of minimizing the global cost of the system acquisition and operation, based on the parametrization of actual data from a cellulose plant with a daily production of 1000 tons. Among the several possible decision variables, the pressure and temperature of live steam were selected. These variables significantly affect the energy performance of the cogeneration system. The conditions which determine a lower cost for the system are presented in conclusion.
Resumo:
In this work the problem of defects location in power systems is formulated through a binary linear programming (BLP) model based on alarms historical database of control and protection devices from the system control center, sets theory of minimal coverage (AI) and protection philosophy adopted by the electric utility. In this model, circuit breaker operations are compared to their expected states in a strictly mathematical manner. For solving this BLP problem, which presents a great number of decision variables, a dedicated Genetic Algorithm (GA), is proposed. Control parameters of the GA, such as crossing over and mutation rates, population size, iterations number and population diversification, are calibrated in order to obtain efficiency and robustness. Results for a test system found in literature, are presented and discussed. © 2004 IEEE.
Resumo:
Background: Leptospirosis is an important zoonotic disease associated with poor areas of urban settings of developing countries and early diagnosis and prompt treatment may prevent disease. Although rodents are reportedly considered the main reservoirs of leptospirosis, dogs may develop the disease, may become asymptomatic carriers and may be used as sentinels for disease epidemiology. The use of Geographical Information Systems (GIS) combined with spatial analysis techniques allows the mapping of the disease and the identification and assessment of health risk factors. Besides the use of GIS and spatial analysis, the technique of data mining, decision tree, can provide a great potential to find a pattern in the behavior of the variables that determine the occurrence of leptospirosis. The objective of the present study was to apply Geographical Information Systems and data prospection (decision tree) to evaluate the risk factors for canine leptospirosis in an area of Curitiba, PR.Materials, Methods & Results: The present study was performed on the Vila Pantanal, a urban poor community in the city of Curitiba. A total of 287 dog blood samples were randomly obtained house-by-house in a two-day sampling on January 2010. In addition, a questionnaire was applied to owners at the time of sampling. Geographical coordinates related to each household of tested dog were obtained using a Global Positioning System (GPS) for mapping the spatial distribution of reagent and non-reagent dogs to leptospirosis. For the decision tree, risk factors included results of microagglutination test (MAT) from the serum of dogs, previous disease on the household, contact with rats or other dogs, dog breed, outdoors access, feeding, trash around house or backyard, open sewer proximity and flooding. A total of 189 samples (about 2/3 of overall samples) were randomly selected for the training file and consequent decision rules. The remained 98 samples were used for the testing file. The seroprevalence showed a pattern of spatial distribution that involved all the Pantanal area, without agglomeration of reagent animals. In relation to data mining, from 189 samples used in decision tree, a total of 165 (87.3%) animal samples were correctly classified, generating a Kappa index of 0.413. A total of 154 out of 159 (96.8%) samples were considered non-reagent and were correctly classified and only 5/159 (3.2%) were wrongly identified. on the other hand, only 11 (36.7%) reagent samples were correctly classified, with 19 (63.3%) samples failing diagnosis.Discussion: The spatial distribution that involved all the Pantanal area showed that all the animals in the area are at risk of contamination by Leptospira spp. Although most samples had been classified correctly by the decision tree, a degree of difficulty of separability related to seropositive animals was observed, with only 36.7% of the samples classified correctly. This can occur due to the fact of seronegative animals number is superior to the number of seropositive ones, taking the differences in the pattern of variable behavior. The data mining helped to evaluate the most important risk factors for leptospirosis in an urban poor community of Curitiba. The variables selected by decision tree reflected the important factors about the existence of the disease (default of sewer, presence of rats and rubbish and dogs with free access to street). The analyses showed the multifactorial character of the epidemiology of canine leptospirosis.
Resumo:
Making diagnoses in oral pathology are often difficult and confusing in dental practice, especially for the lessexperienced dental student. One of the most promising areas in bioinformatics is computer-aided diagnosis, where a computer system is capable of imitating human reasoning ability and provides diagnoses with an accuracy approaching that of expert professionals. This type of system could be an alternative tool for assisting dental students to overcome the difficulties of the oral pathology learning process. This could allow students to define variables and information, important to improving the decision-making performance. However, no current open data management system has been integrated with an artificial intelligence system in a user-friendly environment. Such a system could also be used as an education tool to help students perform diagnoses. The aim of the present study was to develop and test an open case-based decisionsupport system.Methods: An open decision-support system based on Bayes' theorem connected to a relational database was developed using the C++ programming language. The software was tested in the computerisation of a surgical pathology service and in simulating the diagnosis of 43 known cases of oral bone disease. The simulation was performed after the system was initially filled with data from 401 cases of oral bone disease.Results: the system allowed the authors to construct and to manage a pathology database, and to simulate diagnoses using the variables from the database.Conclusion: Combining a relational database and an open decision-support system in the same user-friendly environment proved effective in simulating diagnoses based on information from an updated database.