71 resultados para Databases on Properties of Inorganic Substances and Materials

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on a study of the: effect of replacing CoO by MnO2 on the sintering and electrical propel-ties of the 98.95% SnO2 + (1 - x)% CoO + x% MnO2 + 0.05% Ta2O5 system. All the samples were compacted into pellets and sintered at 1300 degrees C for 1 h, when they reached densities of about 98% of the theoretical density. An X-ray diffraction (XRD) analysis showed no other detectable phases other than SnO2. Current-voltage characterization indicated varistor behavior in the systems. The non-linear coefficient (alpha) and breakdown electric field (Eb) increased as the amount of MnO2 was increased. The results are explained in terms of an electric barrier modification, due to the presence of adsorbed negative oxygen species at the grain boundary inter face. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural and electronic properties of bulk and both oxidized and reduced SnO2(110) surfaces as well as the adsorption process of O-2 on the reduced surface have been investigated by periodic DFT calculations at B3LYP level. The lattice parameters, charge distribution, density of states and band structure are reported for the bulk and surfaces. Surface relaxation effects have been explicitly taken into account by optimizing slab models of nine and seven atomic layers representing the oxidized and reduced surfaces, respectively. The conductivity behavior of the reduced SnO2(110) surface is explained by a distribution of the electrons in the electronic states in the band gap induced by oxygen vacancies. Three types of adsorption approaches of O-2 on the four-fold tin at the reduced SuO(2)(110) surface have been considered. The most exothermic channel corresponds to the adsorption of O-2 parallel to the surface and to the four-fold tin row, and it is believed to be associated with the formation of a peroxo O-2(2-) species. The chemisorption of O-2 on reduced SnO2(110) surface causes a significant depopulation of states along the band gap and it is shown to trap the electrons in the chemisorbed complex producing an electron-depleted space-charge layer in the inner surface region of the material in agreement with some experimental evidences. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To evaluate the content of inorganic particles and the flexural strength of new condensable composites for posterior teeth in comparison to hybrid conventional composites.Method. The determination of the content of inorganic particles was performed by mass weighing of a polymerized composite before and after the elimination of the organic phase. The volumetric particle content was determined by a practical method based on Archimedes' principle, which calculates the volume of the composite and their particles by differential mass measured in the air and in water. The flexural. strength of three points was evaluated according to the norm ISO 4049:1988.Results. The results showed the following filter content: Alert, 67.26%; Z-100, 65.27%; Filtek P 60, 62.34%; Ariston pHc, 64.07%; Tetric Ceram, 57.22%; Definite, 54.42%; Solitaire, 47.76%. In the flexural strength test, the materials presented the following decreasing order of resistance: Filtek P 60 (170.02 MPa) > Z-100 (151.34 MPa) > Tetric Ceram (126.14 MPa) = Alert (124.89 MPa) > Ariston pHc (102.00 MPa) = Definite (93.63 MPa) > Solitaire (56.71 MPa).Conclusion. New condensable composites for posterior teeth present a concentration of inorganic particles similar to those of hybrid composites but do not necessarily present higher flexural strength. (C) 2003 Elsevier B.V. Ltd. Alt rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The aim of this study was to evaluate the pH, calcium release, setting time, and solubility of two commercially available mineral trioxide aggregate (MTA) cements (white MTA Angelus and MTA Bio), and of three experimental cements (light-cured MTA, Portland cement with 20% bismuth oxide and 5% calcium sulfate, and an epoxy resin-based cement).Study design. For evaluation of pH and calcium ion release, polyethylene tubes with 1.0 mm internal diameter and 10.0 mm length were filled with the cements and immediately immersed in flasks containing 10 mL deionized water. After 3, 24, 72, and 168 hours, the tubes were removed and the water from the previous container was measured for its pH and calcium content with a pH meter and an atomic absorption spectrophotometer. For analysis of the setting time, Gilmore needles weighing 100 g and 456.5 g were used, in accordance with the American Society for Testing and Materials specification no. C266-03. Solubility of each cement was also tested.Results. All the cements were alkaline and released calcium ions, with a declining trend over time. After 3 hours, Portland cement + bismuth oxide and MTA Bio had the highest pH and light-cured MTA the lowest. After 1 week, MTA Bio had the highest pH and light-cured MTA and epoxy resin-based cement the lowest. Regarding calcium ion release, after 3 hours, Portland cement + bismuth oxide showed the highest release. After 1 week, MTA Bio had the highest. Epoxy resin-based cement and light-cured MTA had the lowest calcium release in all evaluation periods. Regarding setting times, white MTA Angelus and MTA Bio had the shortest, Portland cement + bismuth oxide had an intermediate setting time, and the epoxy resin-based cement had the longest. The materials that showed the lowest solubility values were the epoxy resin-based cement, Portland cement + bismuth oxide, and light-cured MTA. The highest solubility values were presented in white MTA Angelus and MTA Bio.Conclusions. The white MTA Angelus and MTA Bio had the shortest setting times, higher pH and calcium ion release, and the highest solubility. In contrast, the epoxy resin-based cement and light-cured MTA showed lower values of solubility, pH, and calcium ion release. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110: 250-256)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of UV-C irradiation of the TPS and PCL biocomposites with sisal bleached fibers was investigated. The biocomposite was UV-C irradiated at room temperature under air atmosphere. The structural and morphological changes produced when the films were exposed to UV irradiation for 142 h, were monitored using Scanning Electron Microscopy (SEM), Mechanical Tensile Tests, Differential Scanning Calorimetry (DSC), X-ray diffraction, Thermogravimetric analysis (TGA), and Fourier transform infra-red analysis (FTIR). Addition of 5-10% fibers in composites exhibited improved mechanical and thermal properties attributed to more efficient dispersibility of fiber in the matrix and good compatibility between fibers and the matrix polymer, however, after irradiated, the tensile properties decreased due to chain scission. The samples of irradiated PCL and IFS showed crystallinity increase, whereas the blend and composites showed a decrease in crystallinity. The DSC and X-ray diffraction studies suggested interaction between polymers in the blend via carboxyl groups in thermoplastic starch-PCL and hydroxyl groups in fibers. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the roughness of colorless ocular button and four brands of colorless acrylic resins designed to fabricate ocular prosthesis as a function of weathering (1008 h) and different thickness (1 and 3.5 mm). Materials and methods: One-hundred-and-twenty specimens were fabricated and distributed in 12 groups. The analysis was carried out by means of digital roughness meter. Results: Data were analyzed statistically by ANOVA and Tukey test at 1% significance. The results showed that there was no statistically significant difference after the weathering period. Both the Vipi Cril acrylic resin with 3.5 mm in thickness and ocular button with 1 mm in thickness presented the lowest roughness values (0.12. Ra). Conclusion: The roughness of the acrylic resins and the ocular button was not affect by the weathering of 1008 h. However, the thickness of the specimens proved to have a major influence on roughness property. © 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diamond-like carbon (DLC) films were grown from radiofrequency plasmas of acetylene-argon mixtures, at different excitation powers, P. The effects of this parameter on the plasma potential, electron density, electron temperature, and plasma activity were investigated using a Langmuir probe. The mean electron temperature increased from about 0.5 to about 7.0 eV while the mean electron density decreased from about 1.2x10(9) to about 0.2x10(9) cm(-3) as P was increased from 25 to 150 W. Both the plasma potential and the plasma activity were found to increase with increasing P. Through actinometric optical emission spectrometry, the relative concentrations of CH, [CH], and H, [H], in the discharge were mapped as a function of the applied power. A rise in [H] and a fall in [CH] with increasing P were observed and are discussed in relation to the plasma characteristics and the subimplantation model. The optical properties of the films were calculated from ultraviolet-visible spectroscopic data; the surface resistivity was measured by the two-point probe method. The optical gap, E(G), and the surface resistivity, rho(s), fall with increasing P. E(G) and rho(s) are in the ranges of about 2.0-1.3 eV and 10(14)-10(16) Omega/square, respectively. The plasma power also influences the film self-bias, V(b), via a linear dependence, and the effect of V(b) on ion bombardment during growth is addressed together with variation in the relative densities of sp(2) and sp(3) bonds in the films as determined by Raman spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coarsening of the nanoporous structure developed in undoped and 3% Sb-doped SnO2 sol-gel dip-coated films deposited on a mica substrate was studied by time-resolved small-angle x-ray scattering (SAXS) during in situ isothermal treatments at 450 and 650 degrees C. The time dependence of the structure function derived from the experimental SAXS data is in reasonable agreement with the predictions of the statistical theory of dynamical scaling, thus suggesting that the coarsening process in the studied nanoporous structures exhibits dynamical self-similar properties. The kinetic exponents of the power time dependence of the characteristic scaling length of undoped SnO2 and 3% Sb-doped SnO2 films are similar (alpha approximate to 0.09), this value being invariant with respect to the firing temperature. In the case of undoped SnO2 films, another kinetic exponent, alpha('), corresponding to the maximum of the structure function was determined to be approximately equal to three times the value of the exponent alpha, as expected for the random tridimensional coarsening process in the dynamical scaling regime. Instead, for 3% Sb-doped SnO2 films fired at 650 degrees C, we have determined that alpha(')approximate to 2 alpha, thus suggesting a bidimensional coarsening of the porous structure. The analyses of the dynamical scaling functions and their asymptotic behavior at high q (q being the modulus of the scattering vector) provided additional evidence for the two-dimensional features of the pore structure of 3% Sb-doped SnO2 films. The presented experimental results support the hypotheses of the validity of the dynamic scaling concept to describe the coarsening process in anisotropic nanoporous systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous and crystalline thin films of Mn-doped(0.5%-10%) GaAs and crystalline thin films of Zn1-xCoxO(x = 3%-20%) were investigated by means of magnetic susceptibility and electron spin resonance (ESR). For the Mn-doped GaAs samples, our results show the absence of ferromagnetic ordering for the amorphous films in the 300 > T > 2 K temperature range, in contrast to the ferromagnetism found in crystalline films for T-C < 110 K. A single ESR line with a temperature independent g-value (g similar to 2) is observed for the amorphous films, and the behavior of this ESR linewidth depends on the level of crystallinity of the film. For the Mn-doped GaAs crystalline films, only a ferromagnetic mode is observed for T < TC when the film is ferromagnetic. Turning now the Zn1-xCoxO films, ferromagnetic loops were observed at room temperature for these films. The magnetization data show an increasing of the saturation magnetization M. as a function of x reaching a maximum value for x approximate to 10%. ESR experiments at T = 300 K in the same films show a strong anisotropic ferromagnetic mode (FMR) for x = 0.10.