4 resultados para DRAG REDUCTION
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This work describes an optical device for the simultaneous recording of shadowgrams and schlieren images, and some results are presented concerning its applications to the study of plasma assisted flow control in airfoil models. This approach offers many advantages in comparison to other methods, specially because the use of tracer particles (like smoke in wind tunnels) is not required for the experiments, thus avoiding contaminations in the electric discharges or air flows. Besides, while schlieren images reveal the refractive index gradients in the area of study, shadowgrams detect the second order spatial derivatives of the refractive indexes. Therefore, the simultaneous recording of these different images may give interesting information about the phenomena under study. In this paper, these images were used to confirm the existence of vortex structures in the flow induced by corona discharges on airfoil models. These structures are a possible explanation for the effects of drag reduction and lift force increasing, which have been reported in experiments of plasma assisted Aerodynamics.
Resumo:
A low-Reynolds-number k-ω model for Newtonian fluids has been developed to predict drag reduction of viscoelastic fluids described by the FENE-P model. The model is an extension to viscoelastic fluids of the model for Newtonian fluids developed by Bredberg et al. (Int J Heat Fluid Flow 23:731-743, 2002). The performance of the model was assessed using results from direct numerical simulations for fully developed turbulent channel flow of FENE-P fluids. It should only be used for drag reductions of up to 50 % (low and intermediate drag reductions), because of the limiting assumption of turbulence isotropy leading to an under-prediction of k, but compares favourably with results from k-ε models in the literature based on turbulence isotropy. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A second-order closure is developed for predicting turbulent flows of viscoelastic fluids described by a modified generalised Newtonian fluid model incorporating a nonlinear viscosity that depends on a strain-hardening Trouton ratio as a means to handle some of the effects of viscoelasticity upon turbulent flows. Its performance is assessed by comparing its predictions for fully developed turbulent pipe flow with experimental data for four different dilute polymeric solutions and also with two sets of direct numerical simulation data for fluids theoretically described by the finitely extensible nonlinear elastic - Peterlin model. The model is based on a Newtonian Reynolds stress closure to predict Newtonian fluid flows, which incorporates low Reynolds number damping functions to properly deal with wall effects and to provide the capability to handle fluid viscoelasticity more effectively. This new turbulence model was able to capture well the drag reduction of various viscoelastic fluids over a wide range of Reynolds numbers and performed better than previously developed models for the same type of constitutive equation, even if the streamwise and wall-normal turbulence intensities were underpredicted.