57 resultados para DOPANTS
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The influence of dopants commonly used in SnO2 varistor ceramics, such as CoO, Cr2O3 or Nb2O5, on the structural properties of SnO2 was investigated. Several SnO2-based ceramics containing only one of the dopants were prepared and characterized. Spectroscopic investigations [visible, near infrared (IR) and IR region] were performed to obtain information about dopants valence states inside the ceramics, as well as about their influence on electronic structure of the material. Structural properties were investigated by X-ray diffraction analysis and mechanisms of dopant incorporation were proposed. Obtained results were confirmed with results of the electrical measurements. Microstructural changes in doped ceramics were investigated by scanning electron microscopy (SEM) analysis that showed great differences in densities, grain size, and morphology of the SnO2 ceramics depending on type of dopants and their distribution. (C) 2004 Published by Elsevier B.V.
Resumo:
Tin oxide is an n-type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of a non-isovalent oxide doping The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits the SnO2 reduction decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at grain boundary leading to densification and grain growth of this polycrystalline oxide.
Resumo:
Room-temperature photoluminescence (PL) was observed in undoped and 2 mol% Cr-, Al- and Y-doped amorphous SrTiO3 thin films. Doping increased the PL, and in the case of Cr significantly reduced the associated PL wavelength. The optical bandgaps, calculated by means of UV-vis absorption spectra, increased with crystallinity and decreased with the doping level. It was considered that yttrium and aluminum substituted Sr2+, whereas chromium replaced Ti4+. It is believed that luminescence centers are oxygen-deficient BO6 complexes, or the same centers with some other defects, such as oxygen or strontium vacancies, or BO6 complexes with some other defects placed in their neighborhood. The character of excitation and the competition for negatively charged non-bridging oxygen (NBO) among numerous types of BO6 defect complexes in doped SrTiO3 results in various broadband luminescence peak positions. The results herein reported are an indicative that amorphous titanates are sensitive to doping, which is important for the control of the electro-optic properties of these materials. The probable incorporation of Cr into the Ti site suggests that the existence of a double network former can lead to materials displaying a more intense photoluminescence.
Resumo:
Tin oxide is an n type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of aliovalent oxide doping. The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As a consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits SnO2 reduction by decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at the sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at the grain boundary leading to densification and grain growth of this polycrystalline oxide.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Strain and vacancy cluster behavior of vanadium and tungsten-doped Ba[Zr(0.10)Ti(0.90)]O(3) ceramics
Resumo:
Strain and vacancy clusters behavior of polycrystalline vanadium (V) and tungsten (W)-doped Ba[Zr(0.10)Ti(0.90)]O(3), (BZT:2%V) and (BZT:2%W) ceramics obtained by the mixed oxide method was evaluated. Substitution of V and W reduces the distortion of octahedral clusters, decreasing the Raman modes. Electron paramagnetic resonance data indicate that the addition of dopants leads to defects and symmetry changes in the BZT lattice. Remnant polarization and coercive field are affected by V and W substitution due the electron-relaxation mode. The unipolar strain E curves as a function of electric field reach its maximum value for BZT:2%V and BZT:2%W ceramics. (c) 2008 American Institute of Physics.
Resumo:
The addition of different dopants affects the densification, mean grain size and electrical properties of TiO2-based varistor ceramics. This paper discusses the microstructural and electrical properties of (Ta, Co, Pr) doped TiO2 systems, demonstrating that some of these systems display electrical properties that allow for their use as low voltage varistor. Dopants such as Ta2O5 play a special role in the formation of barriers at the grain boundary and in the nonlinear behavior in TiO2-based systems. The higher values of nonlinear coefficient and breakdown electric field were obtained in the system just doped with Ta2O5 and CoO.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O estudo da adição de dopantes trivalentes é uma das principais pesquisas na área de varistores. Vários autores têm buscado entender os efeitos destes dopantes nas propriedades elétricas e microestruturais destas cerâmicas eletrônicas. Tanto metais de transição quanto terras raras são adicionados em cerâmicas à base de SnO2 a fim de verificar o seu comportamento. O que se tem observado é que alguns destes óxidos tais como Cr2O3 e La2O3 melhoram significativamente as propriedades elétricas dos varistores, enquanto que outros como o Bi2O3 e Er2O3, por exemplo, não produzem tal efeito. A evolução do desempenho do comportamento varistor tem sido também atribuída às espécies de oxigênio produzidas pela reação com estes dopantes. Esta revisão apresenta resultados de estudos recentes do comportamento varistor frente a adição de metais doadores.
Resumo:
We theoretically investigated how the formation of oxygen vacancies and the addition of niobium and chromium atoms as dopants modify the varistor properties of TiO2. The calculations were carried out at the HF level using a contracted basis set, developed by Huzinaga et al.. to represent the atomic centers on the (110) surface for the large (TiO2)(15) cluster model. The change of the values for the net atomic charges and band gap after oxygen vacancy formation and the presence of dopants in the lattice are analyzed and discussed. It is shown that the formation of oxygen vacancies decreases the band gap while an opposite effect is found when dopants are located in the reduced surface. The theoretical results are compared with available experimental data. A plausible explanation of the varistor behavior of this system is proposed. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Lead zirconate powder, with Zr/Ti ratio of 50/50 was prepared by polymeric precursor method and doped with 3, 5 and 7 mol% of Sr+2 Or Ba+2, as well as by 0.2 to 5 mol% of Nb+5. The powder was calcined at 750 degrees C by 4 hours and milled during 1.5 h in isopropilic alcohol. Powders were characterized by surface area measurements (BET method), by infrared spectroscopy and by X-ray diffraction to characterize the crystal structure. Isostatically pressed samples were sintered in a dilatometer furnace by using a constant heating rate of 10 degrees C/min from ambient to 1200 degrees C. Synthetic air and air with water vapor were used as atmospheres. Both Sr+2 and Ba+2 substitute Pb+2 and favor the formation of rhombohedral phase. Otherwise, Nb+5 substitute preferentially Zr+4 favoring tetragonal phase. The concentration of dopants and the atmosphere influence the densification and the microstructure of the PZT, which alters the dielectric and piezoelectric properties of the ceramics.
Resumo:
Doped zirconia has been used in electronic applications in the cubic crystalline phase. Ceria-stabilized tetragonal zirconia presents high toughness and can also be applied as solid electrolytes. The tetragonal phase of zirconia can be stabilized at room temperature with ceria in a broad range of composition. However, CeO2-ZrO2 has low sinterability. so it is important to investigate the effect of sintering dopants. In this study the effect of iron, copper. manganese and nickel was investigated. The dopants such as iron and copper lowered the sintering temperature from 1600 degreesC down to 1450 degreesC, with a percentage of tetragonal phase retained at room temperature higher than 98% and also with an increase of the electrical conductivity. The electrical conductivity was measured using impedance spectroscopy. The grain boundary contribution was determined and the activation energy associated with the ionic conduction was 1.04 eV. The dopants can also promote a grain boundary cleanliness verified by blocking effect measurement. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The effects of La2O3 on the properties of (Zn, Co, Ta) doped SnO2 varistors were investigated in this study. The samples with different La2O3 concentrations were sintered at 1400 degrees C for 2 h and their properties were characterized by XRD, SEM, I-V and impedance spectroscopy. The grain size was found to decrease from 13 pm to 9 gm with increasing La2O3 content. The addition of rare earth element leads to increase the nonlinear coefficient and the breakdown voltage. The enhancement was expected to arise from the possible segregation of lanthanide ion due to its larger ionic radius to the grain boundaries, thereby modifying its electrical characteristics. Furthermore, the dopants such as La may help in the adsorption of O' to O '' at the grain boundaries characteristics. (c) 2006 Elsevier B.V. All rights reserved.