122 resultados para DISEASE GENE SH2D1A
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The fungus Rhizoctonia solani AG-1 IA causes sheath blight, one of the most important rice diseases worldwide. The first objective of this study was to analyse the genetic structure of R. solani AG-1 IA populations from three locations in the Iranian Caspian Sea rice agroecosystem. Three population samples of R. solani AG-1 IA isolates were obtained in 2006 from infected rice fields separated by 126-263km. Each field was sampled twice during the season: at the early booting stage and 45days later at the early mature grain stage. The genetic structure of these three populations was analysed using nine microsatellite loci. While the population genetic structure from Tonekabon and Amol indicated high gene flow, they were both differentiated from Rasht. The high gene flow between Tonekabon and Amol was probably due mainly to human-mediated movement of infested seeds. The second objective was to determine the importance of recombination. All three populations exhibited a mixed reproductive mode, including both sexual and asexual reproduction. No inbreeding was detected, suggesting that the pathogen is random mating. The third objective was to determine if genetic structure within a field changes over the course of a growing season. A decrease in the proportion of admixed genotypes from the early to the late season was detected. There was also a significant (P=0·002) increase in the proportion of loci under Hardy-Weinberg equilibrium. These two lines of evidence support the hypothesis that basidiospores can be a source of secondary inoculum. © 2012 BSPP.
Resumo:
We examined the types of Epstein-Barr virus-associated nuclear antigen-1 (EBNA-1) gene carboxy (C)-terminal mutations occurring in Hodgkin's disease (HD) and reactive tissues from two different geographic regions. Previously reported EBNA-1 C-terminal region amino acid sequence variants, based on the amino acid at codon 487, include Prototype (P)-ala, which is found in the B95.8-derived prototype virus, P-thr, Variant (V)-leu, V-val, and V-pro. Using polymerase chain reaction (PCR) to amplify portions of the EBNA-1 gene, followed by DNA sequencing, we found a single EBNA-1 gene sequence variant in each tissue, whether reactive or neoplastic and whether from Brazil or the United States. Variant EBNA-1 gene sequences were more common in both neoplastic and non-neoplastic tissues from different geographic areas than the so-called prototype sequence. In the 17 Brazilian HD cases, 4 cases had P-thr variants and 13 had V-leu variants. In the six reactive tissues from Brazil, one had a P-ala variant, two had P-thr variants, and three had V-leu variants. In the 12 American HD cases, 2 had P-ala variants, 6 had P-thr variants, and 4 had V-leu variants. The 11 American reactive tissues included 2 P ala variants, 5 P-thr variants, and 4 V-leu variants. In both countries, there were similar variant EBNA-1 sequences present in normal tissues and HD cases. Compared with the P ala and P-thr cases, the V-leu cases were more likely to have the 30-bp latent membrane protein 1 (LMP1) gene deletion (P = 0.0075). In addition, cases of HD with the V-leu were statistically associated with a substitution of asparagine for glutamine at codon 322 of the C-terminal portion of the LMP1 gene. Our results suggest that any variation in EBNA-1 gene sequence is caused by a polymorphism present in pre-existing viral strains in the underlying population, and not a mutation occurring during oncogenesis. (C) 1999 by the American Society of Hematology.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Canavan disease, an inherited leukodystrophy, is caused by mutations in the aspartoacylase (ASPA) gene. It is most common among children of Ashkenazi Jewish descent but has been diagnosed in many diverse ethnic groups. Two mutations comprise the majority of mutant alleles in Jewish patients, while mutations in the ASPA gene among non-Jewish patients are different and more diverse. In the present study, the ASPA gene was analysed in 22 unrelated non-Jewish patients with Canavan disease, and 24 different mutations were found. of these,14 are novel, including five missense mutations (E24G, D68A, D249V, C152W, H244R), two nonsense mutations (Q184X, E214X), three deletions (923delT, 33del13, 244delA), one insertion mutation (698insC), two sequence variations in one allele ([10T>G; 11insG]), an elimination of the stop codon (941A>G, TAG-->TGG, X314W), and one splice acceptor site mutation (IVS1 - 2A>T). The E24G mutation resulted in substitution of an invariable amino acid residue (Glu) in the first esterase catalytic domain consensus sequence. The IVS1 - 2A>T mutation caused the retention of 40 nucleotides of intron 1 upstream of exon 2. The results of transient expression of the mutant ASPA cDNA containing these mutations in COS-7 cells and assays for ASPA activity of patient fibroblasts indicated that these mutations were responsible for the enzyme deficiency. In addition, patients with the novel D249V mutation manifested clinically at birth and died early. Also, patients with certain other novel mutations, including C152W, E214X, X314W, and frameshift mutations in both alleles, developed clinical manifestations at an earlier age than in classical Canavan disease.
Resumo:
A 30-basepair (bp) deletion in the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) gene has been reported in nasopharyngeal carcinoma and EBV-associated malignant lymphomas. Prior studies have found the deletion in about 10% to 28% of cases of Hodgkin's disease (HD), particularly in cases with aggressive histology. We studied the prevalence of 30-bp LMP1 gene deletion in EBV-positive HD in the United States (US) (12 cases) and Brazil (26 cases) with comparison to reactive lymphoid tissues (21 cases) and HD without EBV-positive Reed-Sternberg cells (15 cases). We studied the status of the LMP1 gene by Southern blot hybridization of polymerase chain reaction (PCR) products obtained after amplification with primers spanning the site of the deletion. We also performed EBV typing, EBER1 in situ hybridization, and LMP1 protein immunohistochemistry. EBV was detected in 12/26 (46%) cases of HD from the US and 26/27 (96%) cases of Brazilian HD. The 30-bp LMP1 gene deletion was observed in 4/12 (33%) cases of EBV-positive HD from US, and 12/26 (46%) cases of Brazilian EBV-positive HD, including 3 cases of type B EBV, as compared with 12/21 (57%) reactive lymphoid tissues and 9/15 (60%) cases of EBV-negative HD. US and Brazilian HD showed a higher prevalence of the 30-bp LMP1 gene deletion, compared with studies of others. The unexpected finding of high incidence of 30-bp deletion in LMP1 gene in reactive lymphoid tissue and HD without EBV-positive Reed-Sternberg cells suggests that this deletion may not be relevant to HD pathogenesis in most cases. Copyright (C) 1997 by W.B. Saunders Company.
Resumo:
We assessed the effect of a recently described mutation in the MTHFR gene (1298 A --> C) on the risk of deep venous thrombosis (DVT) by determining its prevalence in 190 patients with verified DVT and in age-, race- and gender-matched controls. MTHFR 1298 A --> C was found in 42.1% of patients and in 41.1% of controls. The OR for venous thrombosis was 1.07 (95% CI 0.70-1.65) for heterozygotes and 0.83 (95% CI 0.33-2.08) for homozygotes. The OR for the factor V Leiden (FVL) mutation was 3.40 (95% CI 1.22-9.48), for FII 20210 G --> A was 5.22 (95% CI 1.12-24.2) and for MTHFR 677 C --> T, 1.24 (95% CI 0.82-1.87). No significant increased risk for venous thrombosis was found when MTHFR 1298 A --> C was coinherited with FVL (OR 2.85, 95% CI 0.88-9.23), FIT 20210 G --> A (OR 7.19, 95% CT 0.87-59.4) or MTHFR 677 C --> T (OR 1.44, 95% CT 0.71-2.92). These data do not support a critical role of MTHFR 1298 A --> C in the predisposition to DVT.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Atherosclerotic coronary artery disease (CAD) is a multifactorial process that appears to be caused by the interaction of environmental risk factors with multiple predisposing genes. It is nowadays accepted that increased levels of DNA damage induced by xenobiotics play an important role in the early phases of atherogenesis. Therefore, in this study, we focus on determining whether genetic variations in xenobiotic-metabolizing [glutathione-S-transferase theta 1 (GSTT1), glutathione-S-transferase mu 1 (GSTM1), cytochrome P450 IIEI (CYP2E1)] and DNA repair [X-ray cross-complementing group 1 (XRCC1)] genes might be associated with increased risk for CAD. Methods: A case-control study was conducted with 400 individuals who underwent subjected to coronary angiography. A total of 299 were patients diagnosed with effective coronary atherosclerosis (case group; >20% obstructive lesion), and 101 (control group) were individuals diagnosed as negative for CAD (<20% obstructive lesions). The polymorphism identifications for GSTM1 and GSTT1, and for CYP2E1 and XRCC1 genes were performed by polymerase chain reaction (PCR) amplification and by PCR-RFLP, respectively. Results and conclusions: The XRCC1 homozygous wild-type genotype Arg/Arg for codon 399 was statistically less pronounced in the case subjects (21.4%) than in controls (38.5%); individuals with the variant XRCC1 genotype had a 2.3-fold increased risk for coronary atherosclerosis than individuals with the wild-type genotype (OR=2.3, 95% CI=1.13-4.69). Conversely, no association between GSTM1, GSTT1, and CYP2E1gene polymorphisms and coronary atherosclerosis was detected. The results provide evidence of the role of DNA damage and repair in cardiovascular disease. © 2011 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)