38 resultados para Cutting force
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The work reported here involved an investigation into the grinding process, one of the last finishing processes carried out on a production line. Although several input parameters are involved in this process, attention today focuses strongly on the form and amount of cutting fluid employed, since these substances may be seriously pernicious to human health and to the environment, and involve high purchasing and maintenance costs when utilized and stored incorrectly. The type and amount of cutting fluid used directly affect some of the main output variables of the grinding process which are analyzed here, such as tangential cutting force, specific grinding energy, acoustic emission, diametrical wear, roughness, residual stress and scanning electron microscopy. To analyze the influence of these variables, an optimised fluid application methodology was developed (involving rounded 5, 4 and 3 turn diameter nozzles and high fluid application pressures) to reduce the amount of fluid used in the grinding process and improve its performance in comparison with the conventional fluid application method (of diffuser nozzles and lower fluid application pressure). To this end, two types of cutting fluid (a 5% synthetic emulsion and neat oil) and two abrasive tools (an aluminium oxide and a superabrasive CBN grinding wheel) were used. The results revealed that, in every situation, the optimised application of cutting fluid significantly improved the efficiency of the process, particularly the combined use of neat oil and CBN grinding wheel. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
During gray cast iron cutting, the great rate of mechanical energy from cutting forces is converted into heat. Considerable heat is generated, principally in three areas: the shear zone, rake face and at the clearance side of the cutting edge. Excessive heat will cause undesirable high temperature in the tool which leads to softening of the tool and its accelerated wear and breakage. Nowadays the advanced ceramics are widely used in cutting tools. In this paper a composition special of Si3N4 was sintering, characterized, cut and ground to make SNGN120408 and applyed in machining gray cast iron with hardness equal 205 HB in dry cutting conditions by using digital controlled computer lathe. The tool performance was analysed in function of cutting forces, flank wear, temperature and roughness. Therefore metal removing process is carried out for three different cutting speeds (300 m/min, 600 m/min, and 800 m/min), while a cutting depth of 1 mm and a feed rate of 0.33 mm/rev are kept constant. As a result of the experiments, the lowest main cutting force, which depends on cutting speed, is obtained as 264 N at 600 m/min while the highest main cutting force is recorded as 294 N at 300 m/min.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study, different methods of cutting fluid application are used in turning of a difficult-to-machine steel (SAE EV-8). Initially, a semisynthetic cutting fluid was applied using a conventional method (i.e. overhead flood cooling), minimum quantity of cutting fluid, and pulverization. A lubricant of vegetable oil (minimum quantity of lubricant) was also applied using the minimum quantity method. Thereafter, a cutting fluid jet under high pressure (3.0 MPa) was singly applied in the following regions: chip-tool interface, top surface of the chip (between workpiece and chip) and tool-workpiece contact. Moreover, two other methods were used: an interflow between conventional application and chip-tool interface jet (combined method) and, finally, three jets simultaneously applied. In order to carry out these tests, it was necessary to set up a high-pressure system using a piston pump for generating a cutting fluid jet, a venturi for fluid application (minimum quantity of cutting fluid and minimum quantity of lubricant) and a nozzle for cutting fluid pulverization. The output variables analyzed included tool life, surface roughness, cutting tool temperature, cutting force, chip form, chip compression rate and machined specimen microstructure. Among the results, it can be observed that the tool life increases and the cutting force decreases with the application of cutting fluid jet, mainly when it is directed to the chip-tool interface. Excluding the methods involving jet fluid, the conventional method seems to be more efficient than other methods of low pressure, such as minimum quantity of volume and pulverization, when considering just the cutting tool wear. © 2013 IMechE.
Resumo:
Different methods of cutting fluid application are used on turning of a difficult-tomachine steel (SAE EV-8). A semi-synthetic cutting fluid was applied using a conventional method, minimum quantity of cutting fluid (MQCF), and pulverization. By the minimum quantity method was also applied a lubricant of vegetable oil (MQL). Thereafter, a cutting fluid jet under high pressure (3.0 MPa) was singly applied in the following regions: chip-tool interface; top surface of the chip; and tool-workpiece contact. Two other methods were used: an interflow between conventional application and chip-tool interface jet and, finally, three jets simultaneously applied. In order to carry out these tests, it was necessary to set up a high pressure system using a piston pump for generating a cutting fluid jet, a Venturi for fluid application (MQCF and MQL), and a nozzle for cutting fluid pulverization. The output variables analyzed included tool life, surface roughness, cutting tool temperature, cutting force, chip form, chip compression rate and machined specimen microstructure. It can be observed that the tool life increases and the cutting force decreases with the application of cutting fluid jet, mainly when it is directed to the chip-tool interface. Excluding the methods involving jet fluid, the conventional method seems to be more efficient than other methods of low pressure. © (2013) Trans Tech Publications, Switzerland.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Effects of amylase addition on extruder parameters, cost of extrusion, kibble quality and digestibility of dog food were measured in two separate experiments. In experiment 1, 120 kilo-novo-alpha-amilase-unit (KNU)/kg of heat stable alpha-amylase produced by Bacillus licheniformis was added in liquid form during a preconditioning period. In experiment 23684 KNU/kg of heat stable alpha-amylase produced by Aspergillus oryzae was mixed with the ingredients before extrusion. The diets were processed in a single screw extruder and submitted to digestibility and on experiment 1 also to palatability tests. Digestibility was tested using 12 dogs, six per diet. Data were submitted to analysis of variance followed by F-test. Amylase addition altered extrusion parameters in both experiments (P<0.05), with higher output (kg of dry matter [DM]/h: 28% and 43% higher in experiments 1 and 2) and less electric energy consumption (kW to produce 100 kg DM: 22% and 29% lower in experiments 1 and 2). Kibble appearance and quality [density (g/L), cutting force (g), and starch gelatinization degree (%)] did not change with enzyme treatment (P>0.05). Likewise, enzyme addition did not change nutrient digestibility, fecal dry matter or food palatability (P<0.05). Taken together our results suggest that amylase promoted the breakdown of amylose chains, thereby reducing the dough viscosity and resistance inside the extruder which allowed for higher product flow and less electricity energy consumption without altering food quality. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
O corte de materiais por disco abrasivo é um dos processos que apresentam as melhores características de economia, eficiência e rapidez sendo muito utilizado no meio industrial. Fatores como porcentagens e homogeneidade da mistura dos componentes, tamanho, forma (abrasividade), tenacidade e dureza dos grãos abrasivos, tipos de ligantes e de abrasivos, velocidade de corte e velocidade de mergulho influenciam na segurança, no desempenho e comportamento da operação. Este trabalho apresenta um estudo sobre a influência da dureza dos discos abrasivos no desempenho do processo de corte em operações do tipo remoção a seco. O aumento da dureza dos discos propiciou um aumento da força tangencial de corte e da relação G, devido à mais forte ligação entre o grão e o ligante no compósito. Os resultados mostram que a dureza dos discos abrasivos afeta a economia, pois influencia na vida útil dos discos abrasivos em termos de números de cortes proporcionados; a produtividade, pois está relacionada com o número de trocas de discos desgastados; os esforços necessários para a operação, pois estão relacionados com as forças tangenciais de corte.
Resumo:
After sintering advanced ceramics, there are invariably distortions, caused in large part by the heterogeneous distribution of density gradients along the compacted piece. To correct distortions, machining is generally used to manufacture pieces within dimensional and geometric tolerances. Hence, narrow material removal limit conditions are applied, which minimize the generation of damage. Another alternative is machining the compacted piece before sintering, called the green ceramic stage, which allows machining without damage to mechanical strength. Since the greatest concentration of density gradients is located in the outer-most layers of the compacted piece, this study investigated the removal of different allowance values by means of green machining. The output variables are distortion after sintering, tool wear, cutting force, and the surface roughness of the green ceramics and the sintered ones. The following results have been noted: less distortion is verified in the sintered piece after 1mm allowance removal; and the higher the tool wear the worse the surface roughness of both green and sintered pieces.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper is presented an experimental research in which the grinding of seating surfaces of inlet engine valves was improved by the adoption of the most effective cutting fluid type, matching the new requirements of cutting fluid application. Four different types of cutting fluids (straight oil and three different types of soluble oils) were analyzed. As qualitative and quantitative evaluation parameters of the performance of the cutting fluids, the roughness, the grinding wheel wear, the cutting force and the workpiece residual stress were determined. As a conclusion, the straight oil was the cutting fluid that presented the best results in all of the parameters analyzed. Copyright © 2000 Society of Automotive Engineers, Inc.
Resumo:
We report herein on a comparison of the performance of two different grinding wheels (conventional and CBN) in the transverse cylindrical grinding of a eutectic alloy. Three cutting conditions were tested: rough, semi-finishing and finishing. The parameters of evaluation were the cutting force, roughness and wheel wear. The optimal cutting force and roughness values were obtained when grinding with the conventional wheel, due to the superior dressing operation performed under every cutting condition tested. Although the CBN wheel presented the best G ratio values, they were lower than expected owing to the inappropriate dressing operation applied. Excessive wheel corner wear was detected in both wheels, caused by the grinding kinematics (transverse grinding) employed. In terms of cutting force and roughness, the conventional wheel proved to be the better choice under the conditions tested. However, in terms of the G ratio, a cost analysis is crucial to determine whether the differences between the wheels justify the use of the CBN wheel, in which case the dressing operation requires improvement.
Resumo:
The behavior of the minimum quantity lubricant (MQL) technique was analyzed under different lubricating and cooling conditions when grinding ABNT 4340 steel. The comparative analysis of the residual stress values showed that residual compressive stresses were obtained under all the lubrication/cooling conditions and types of abrasive tools employed. The highest residual compressive stress obtained with the aluminum oxide grinding wheel with MQL under the condition of V= 30m/s for air and V= 40ml/h for lubricant was -376MPa against the -160MPa attained with conventional cooling, representing a 135% increase in residual compressive stress. The results show that method and quantity of lubricant and cooling are factors that influence the grinding process.
Resumo:
Grinding - the final machining process of a workpiece - requires large amounts of cutting fluids for the lubrication, cooling and removal of chips. These fluids are highly aggressive to the environment. With the technological advances of recent years, the worldwide trend is to produce increasingly sophisticated components with very strict geometric and dimensional tolerances, good surface finish, at low costs, and particularly without damaging the environment. The latter requirement can be achieved by recycling cutting fluids, which is a costly solution, or by drastically reducing the amount of cutting fluids employed in the grinding process. This alternative was investigated here by varying the plunge velocity in the plunge cylindrical grinding of ABNT D6 steel, rationalizing the application of two cutting fluids and using a superabrasive CBN (cubic boron nitride) grinding wheel with vitrified binder to evaluate the output parameters of tangential cutting force, acoustic emission, roughness, roundness, tool wear, residual stress and surface integrity, using scanning electron microscopy (SEM) to examine the test specimens. The performance of the cutting fluid, grinding wheel and plunge velocity were analyzed to identify the best machining conditions which allowed for a reduction of the cutting fluid volume, reducing the machining time without impairing the geometric and dimensional parameters, and the surface finish and integrity of the machined components.
Resumo:
An alternative for grinding of sintered ceramic is the machining on the green state of the ceramic, which presents easy cutting without the introduction of harmful defects to its mechanical resistance. However, after sintering there are invariably distortions caused by the heterogeneous distribution of density gradients, which are located in the most outlying portions of the compacted workpiece. In order to minimize these density gradients, this study examined the influence of different allowance values and their corresponding influence in distortion after sintering alumina specimens with 99.8 % purity by turning operation using cemented carbide tool. Besides distortion, other output variables were analyzed, such as tool wear, cutting force and surface roughness of green and sintered ceramics. Results showed a distortion reduction up to 81.4%. Green machining is beneficial for reducing surface roughness in both green and sintered states. Cutting tool wear has a direct influence on surface roughness and cutting force.