20 resultados para Cumulative exergy analysis
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper presents a methodology for the study of a molten carbonate fuel cell co-generation system. This system is applied to a dairy industry of medium size that typically demands 2100 kW of electricity, 8500 kg/h of saturated steam (P = 1.08 MPa) and 2725 kW of cold water production. Depending on the associated recuperation equipment, the co-generation system permits the recovery of waste heat, which can be used for the production of steam, hot and cold water, hot and cold air. In this study, a comparison is made between two configurations of fuel cell co-generation systems (FCCS). The plant performance has been evaluated on the basis of fuel utilisation efficiency and each system component evaluated on the basis of second law efficiency. The energy analysis presented shows a fuel utilisation efficiency of about 87% and exergy analysis shows that the irreversibilities in the combustion chamber of the plant are significant. Further, the payback period estimated for the fuel cell investment between US$ 1000 and US$ 1500/k-W is about 3 and 6 years, respectively. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The purpose of this work is to study the incorporation of hydrogen production (Case A) and the process of gasification of sugarcane bagasse associated with combined cycle gas turbine and steam turbine (Case B) for Distillery Pioneers process. These technologies can be used to improve the energy supply in the sugarcane mill. Initially the processes for obtaining sugar and ethanol from sugarcane is discussed, with a theoretical introduction to hydrogen, the process of steam reforming and gasification of biomass (bagasse) by inserting a turbine associated with the recovery boiler gas. Subsequently makes up the energy and exergy analysis of the incorporation of the above technologies. In end stage makes it an ecological analysis considering or not the carbon cycle (photosynthesis), to determine the levels of emissions of pollutants, carbon dioxide equivalent, indicators of pollution and ecological efficiencies associated with technological developments proposed. It is concluded that hydrogen production by steam reforming of ethanol and gasification of bagasse are viable alternatives from the point of view of technical and environmental applications in the biofuels industry, contributing to the development of the sector in the country
Resumo:
The fuel cell is an emerging cogeneration technology that has been applied successfully in Japan, the USA and some countries in the European Union. This system performs direct conversion of the chemical energy of the oxidation of hydrogen from fuel with atmospheric oxygen into direct current electricity and waste heat via an electrochemical process relying on the use of different electrolytes (phosphoric acid, molten carbonate and solid oxide, depending on operating temperature). This technology permits the recovery of waste heat, available from 200 degreesC up to 1000 degreesC depending on the electrolyte technology, which can be used in the production of steam, hot or cold water, or hot or cold air, depending on the associated recuperation equipment. In this paper, an energy, exergy and economic analysis of a fuel cell cogeneration system (FCCS) is presented. The FCCS is applied in a segment of the tertiary sector to show that it is a feasible alternative for rational decentralized energy production under Brazilian conditions. The technoeconomic analysis shows a global efficiency or fuel utilization efficiency of 86%. Analysis shows that the exergy losses in the fuel cell unit and the absorption refrigeration system are significant. Furthermore, the payback period estimated is about 3 and 5 years for investments in fuel cells of 1000 and 1500 US$/kW, respectively. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this paper, a thermoeconomic functional analysis method based on the Second Law of Thermodynamics and applied to analyze four cogeneration systems is presented. The objective of the developed technique is to minimize the operating costs of the cogeneration plant, namely exergetic production cost (EPC), assuming fixed rates of electricity production and process steam in exergy base. In this study a comparison is made between the same four configurations of part I. The cogeneration system consisting of a gas turbine with a heat recovery steam generator, without supplementary firing, has the lowest EPC. (C) 2004 Published by Elsevier Ltd.
Resumo:
This work aims with an approach for cogeneration plants evaluation based on thermoeconomic functional diagram analysis. The second law of thermodynamics is used to develop a methodology to analyse cogeneration systems, based on exergoeconomics evaluation. The thermoeconomic optimisation method developed is applied to allow a better configuration of the cogeneration plant associated to a university hospital. Also ecological efficiency is evaluated. The method was efficient and contributes for thermoeconomics modelling and analysis and can be applied to any sort of thermal system, especially those with combined heat and power in thermal parity. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Improved pregnancy, implantation, and birth rates have been reported after the use of reduced O2 concentration during embryo culture, mainly due to a reduction of the cumulative detrimental effects of reactive oxygen species. However, some studies have failed to report any positive effects. The objective of this meta-analysis was to evaluate the effect of a low-O2 environment on IVF/intracytoplasmic sperm injection (ICSI) outcomes.Methods: All available published and ongoing randomised trials that compared the effects of low (similar to 5%; OC similar to 5) and atmospheric (similar to 20%; OC similar to 20) oxygen concentrations on IVF/ICSI outcomes were included. Search strategies included online surveys of databases from 1980 to 2011. The outcomes measured were fertilisation rate, implantation rate and ongoing pregnancy rates. The fixed effects model was used to calculate the odds ratio.Results: Seven studies were included in this analysis. The pooled fertilisation rate did not differ significantly (P = 0.54) between the group of oocytes cultured at low O2 tension and the group at atmospheric O2 tension. Concerning all cycles, the implantation (P = 0.06) and ongoing pregnancy (P = 0.051) rates were not significantly different between the group receiving transferred sets containing only OC similar to 5 embryos and the group receiving transferred sets with only OC similar to 20 embryos. In a meta-analysis performed for only those trials in which embryos were transferred on day 2/3, implantation (P = 0.63) and ongoing pregnancy (P = 0.19) rates were not significantly different between the groups. In contrast, when a meta-analysis was performed using only trials in which embryos were transferred on days 5 and 6 (at the blastocyst stage), the group with transferred sets of only OC similar to 5 embryos showed a statistically significantly higher implantation rate (P = 0.006) than the group receiving transferred sets with only OC similar to 20 embryos, although the ongoing pregnancy (P = 0.19) rates were not significantly different between the groups.Conclusions: Despite some promising results, it seems too early to conclude that low O2 culture has an effect on IVF outcome. Additional randomised controlled trials are necessary before evidence-based recommendations can be provided. It should be emphasised that the present meta-analysis does not provide any evidence that low oxygen concentration is unnecessary.
Resumo:
The buffalo population in Brazil increased about 12.9% between 1998 and 2003, to 2.8 million head, evidencing the importance of this species for the country. The objective this work was evaluation of animal growth using multivariate analysis. The data were from 2,944 water buffalo from 10 herds raised in pasture conditions in Brazil. Principal components and genetic distances were estimated using proc PRINCOMP and proc CANDISC in SAS (SAS Inst. Inc. Cary, NC, USA). Variables analyzed were birth weight (BW), age at weaning (AW), weaning weight (WT), weight adjusted to 205 d (W205), total gain between BW and WT (TG), daily gain between BW and WT (DG), weight adjusted to 365 d (W365), total gain between WT and W365 (TG3), daily gain between WT and W365 (TGD3), weight adjusted to 550 d (W550) and weight adjusted to 730 d (W730). Means and standard deviations for each variable were 39.4 +/- 3.2 kg, 225.6 +/- 38.8 d, 209.4 +/- 39.4 kg, 195.4 +/- 30.2 kg, 157.4 +/- 32.0 kg, 0.77 +/- 0.16 kg/d, 282.0 +/- 43.5 kg, 73.9 +/- 33.9 kg, 0.53 +/- 0.21 kg/d, 406.8 +/- 67.9 kg, and 468.2 +/- 70.6 kg, respectively. The eigenvalues to four first principal components were 5.29, 2.54, 1.66, 1.01, and justify 48%, 23%, 15% and 9%, respectively, with a total cumulative 95%. We created an index using the first principal component which is Y. 0.0552 BW + 0.0438 AW + 0.3142 WT + 0.3549 W205 + 0.3426 TG + 0.3426 DG + 0.4070 W365- 0.1531 TG3 - 0.2059 TGD3 - 0.3833 W550 - 0.3966 W730. This index accounted for 48% the variation in the correlation matrix. This principal component emphasizes early growth of the animal. Estimates the pair-wise squared distances between herds, D2(i vertical bar j)= ((x) over bar (i)-(x) over bar (j))' cov(-1)((x) over bar (i)-(x) over bar (j)), using with basis the average of weight of animals, showed the largest distance between herds eight (Murrah: DF) and seven (Murrah: Amazon) and the closest distance between herds one (Mediterranean - RS) and five (Jafarabadi - SP).
Resumo:
This article presents a thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum Exergetic Production Cost (EPC), based on the Second Law of Thermodynamics. The variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as final output. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In this work it was performed energetic and exergetic analyses of three thermal plants to assessment a cogeneration system in expansion of a sugar-alcohol factory. The initial configuration considered is constituted by a low pressure steam generator, single stage steam turbines for electricity generation and crusher, shredder and mills with mechanical driving. In the intermediary configuration, the low pressure steam generator was substituted by another which generates steam at higher pressure and higher temperature, the steam turbines for electricity generation were substituted by a multiple stages extraction-condensation turbine and the other steam turbines were maintained. The final configuration consists in the substitution of these last turbines by electrical motors. Thermodynamic analyses were performed to evaluate the equipment and the overall plants efficiencies to permit a comparison among the plants. Besides of this, some important parameters of the sugar-alcohol factories were calculated.
Resumo:
In this paper, a thermoeconomic analysis method based on the First and the Second Law of Thermodynamics and applied to analyse the replacement of an equipment of a cogeneration system is presented. The cogeneration system consists of a gas turbine linked to a waste boiler. The electrical demand of the campus is approximately 9 MW but the cogen system generates approximately one third of the university requirement as well as 1.764 kg/s of saturated steam (at 0.861 MPa), approximately, from a single fuel source. The energy-economic study showed that the best system, based on pay-back period and based on the maximum savings (in 10 years), was the system that used the gas turbine M1T-06 of Kawasaki Heavy Industries and the system that used the gas turbine CCS7 of Hitachi Zosen, respectively. The exergy-economic study showed that the best system, which has the lowest EMC, was the system that used the gas turbine ASE50 of Allied Signal. © 2002 Elsevier Science Ltd. All rights reserved.