143 resultados para Cu-ZnO-ZrO2 : HZSM-5

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the electrochemical behavior of Cu-16(wt.%)Zn-6.5(wt.%)Al alloy containing the β'-phase (martensite) was studied in borate buffer solution (pH 8.4) by means of open-circuit potential (EOC), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The alloy EOC was -0.29 V vs. Hg/HgO/OH-, similar to that of pure copper in this medium, indicating that the processes which occur on the alloy surface are mainly governed by copper. EIS response was related to the dielectric and transmission properties of the complex oxide layer. The CVs showed peaks concerning the redox reactions for copper and zinc. These peaks were assigned to the formation and reduction of copper and zinc species. Furthermore, they showed that the copper oxidation was suppressed by the presence of zinc and aluminum in the alloy composition. The copper and zinc oxidation to form complex oxide layers and the reduction of the different metallic oxides generated in the anodic potential scan suggest that a solid state reaction could determine the metallic oxide formation. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of amorphous (am-), monoclinic (m-), and tetragonal (t-) ZrO2 phase on the physicochemical and catalytic properties of supported Cu catalysts for ethanol conversion was studied. The electronic parameters of Cu/ZrO2 were determined by in situ XAS, and the surface properties of Cu/ZrO2 were defined by XPS and DRIFTS of CO-adsorbed. The results demonstrated that the kind of ZrO2 phase plays a key role in the determination of structure and catalytic properties of Cu/ZrO 2 catalysts predetermined by the interface at Cu/ZrO2. The electron transfer between support and Cu surface, caused by the oxygen vacancies at m-ZrO2 and am-ZrO2, is responsible for the active sites for acetaldehyde and ethyl acetate formation. The highest selectivity to ethyl acetate for Cu/m-ZrO2 catalyst up to 513 K was caused by the optimal ratio of Cu0/Cu+ species and the high density of basic sites (O2-) associated with the oxygen mobility from the bulk m-ZrO2. © 2013 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo do estudo foi avaliar a influência da presença de cinco íons em uma calda de pulverização contendo o surfatante Aterbane. A tensão superficial foi analisada por meio da medição da massa de um conjunto de 25 gotas, com quatro repetições constituindo um tratamento. O trabalho foi dividido em duas etapas. Na primeira, os tratamentos foram combinados em esquema fatorial 9x5x2, sendo nove concentrações do surfatante Aterbane (0,01; 0,025; 0,05; 0,1; 0,2; 0,5; 1; 2; e 3%), cinco íons (Mg++, Ca++, Fe+++, Cu+++ e Zn+++) e duas concentrações desses elementos (10 e 100 ppm). Na segunda etapa, os tratamentos foram combinados em esquema fatorial 5x5x1, utilizandose os mesmos cinco elementos (Mg++, Ca++, Fe+++, Cu+++ e Zn+++), em cinco concentrações (1, 5, 20, 50 e 200 ppm), com apenas uma concentração do surfatante Aterbane (0,025%). Outros nove tratamentos permitiram avaliar as tensões superficiais das concentrações do surfatante (0,01; 0,025; 0,05; 0,1; 0,2; 0,5; 1; 2; e 3%) sem a adição dos íons. Os resultados mostraram que houve interferência dos íons sobre as soluções, já que, com exceção do Fe+++ (na concentração de 10 e 100 ppm) e do Cu+++ (na concentração de 100 ppm), todos os íons reduziram a tensão mínima alcançada e aumentaram a eficiência do surfatante, implicando benefícios à ação do surfatante e sobre as características de possíveis soluções de aplicação. Todos os íons avaliados promoveram reduções nas tensões superficiais de soluções do surfatante na concentração de 0,025%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substitutions of Ti and Cu in ZrO2.MgO (Z), cause transformation from monoclinic (m) to cubic (c) and tetragonal (t). According to the vacancy model and solid Solution formation models, neither CuO nor TiO2 cause zirconia stabilization, which derives front other phenomena. Data analysis by TMA using the CRH (constant rate of heating) method shows a solid state reaction of ZrO2.MgO.TiO2 (Z.TiO2) demonstrating a dominant mechanism of volume diffusion (n = 1). However, the sintering of ZrO2.MgO.CuO (Z.CuO) shows a viscous flow mechanism (n = 0), a similar phenomena to that of by sintering of glass. Transformations, such as: CuO to Cu2O at 1000 degreesC, ZrO2 (m) to ZrO2 (t) at 1100 degreesC and Cu2O (s) to Cu2O (l) at 1230 degreesC cause successive rearrangements of microstructure inside of region I (sintering process) and lead to interpretation errors when the Bannister equation is used. (C) 2003 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ta2O5 doped SnO2 varistor systems containing 0.5 mol% ZnO and 0.5 mol% Coo were prepared by mixed oxide method. Considering that ZnO and Coo oxides are densification additives only the SnO(2)center dot ZnO center dot CoO ceramics cannot exhibit electrical nonlinearity. A small amount of Ta2O5 improves the nonlinear properties of the samples greatly. The height and width of the defect barriers were calculated. It was found that samples doped with 0.05 mol% Ta2O5 exhibit the highest density (98.5%), the lowest electric breakdown field (E-b = 1100 V/cm) and the highest coefficient of nonlinearity (alpha = 11.5). The effect of Ta2O5 dopant could be explained by the substitution of Ta5+ by Sn4+. A grain-boundary defect barrier model for the SnO(2)center dot ZnO center dot CoO center dot Ta2O5 varistor system was also introduced. (c) 2004 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molar single ion activity coefficients associated with hydrogen, copper(II), cadmium(II) and lead(II) ions were determined at 25 degrees C and ionic strengths between 0.100 and 3.00 M (NaClO4), whereas for acetate the ionic strengths were fixed between 0.300 and 2.00 M, held with the same inert electrolyte. The investigation was carried out potentiometrically by using proton-sensitive glass, copper, cadmium and lead ion-selective electrodes and a second-class Hg\Hg-2(CH3COO)(2) electrode. It was found that the activity coefficients of these ions (y(i)) can be assessed through the following empirical equations:log y(H) = -0.542I(0.5) + 0.451I; log y(Cu) = -1.249I(0.5) + 0.912I; log y(Cd) = -0.829I(0.5) + 0.448I(1.5);log y(Pb) = -0.404I(0.5) + 0.117I(2); and log y(Ac) = 0.0370I .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this study was to develop dense and conducting SnO 2 ceramics without precipitated phases on the grain boundaries, which was verified using field emission scanning microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (FE-SEM/EDS). Two sample groups were investigated, where the first sample group was doped with zinc while the second one was doped with cobalt. The ceramics were prepared using the oxides mixture method and the sintering was carried out in a conventional muffle oven as well as in microwave oven. The results obtained were found to be similar regarding the relative density for the two sintering methods while time and temperature gains were observed for the microwave sintering method. The relative densities obtained were nearly 95%, for the two sintering methods. Concerning the electrical characterization measurements-electric field x current density as well as the environment temperature, the ceramics obtained through the conventional sintering method presented non-ohmic behavior. For the microwave sintered ceramics, we observed an ohmic behavior with electrical resistivity of 1.3 Ωcm for the samples doped with ZnO/Nb 2O 5 and 2.5 Ωcm for that of the samples doped with CoO/Nb 2O 5. The FE-SEM/EDS results for the microwave sintered ceramics indicated a structure with a reduced number of pores and other phases segregated at the grain boundaries, which leads to a better conductive ceramic than the conventional oven sintered samples. The dilatometry analysis determined the muffle sintering temperature and the difference between the densification of cobalt and zinc oxides. The addition of niobium oxide resulted in the decrease in resistivity, which thus led us to conclude that it is possible to obtain dense ceramics with low electrical resistivity based on SnO 2 using commercial oxides by the oxides mixture technique and the microwave oven sintering method. Copyright © 2011 American Scientific Publishers All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Polycrystalline materials of SnO(2) doped with ZnO, WO(3), CoO, Nb(2)O(5), and MoO(3). were synthesized by solid state reaction. X-ray powder diffraction data were collected with Cu K(alpha) radiation from a Rigaku-Rint 2000 rotating anode source. The structural and profile parameters were refined by the Rietveld method using GSAS [2]. The obtained residual parameters are R(wp) = 11,93% and R(Bragg) = 4,19%. The refined profile parameters indicate no anisotropic crystallite microstrain. The refinement results and Fourier differences calculations indicate that the dopants do not occupy interstitial sites in the crystal structure of SnO(2).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)