43 resultados para Critical coupling parameter
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We compute the critical coupling constant for the dynamical chiral-symmetry breaking in a model of quantum chromodynamics, solving numerically the quark self-energy using infrared finite gluon propagators found as solutions of the Schwinger-Dyson equation for the gluon, and one gluon propagator determined in numerical lattice simulations. The gluon mass scale screens the force responsible for the chiral breaking, and the transition occurs only for a larger critical coupling constant than the one obtained with the perturbative propagator. The critical coupling shows a great sensibility to the gluon mass scale variation, as well as to the functional form of the gluon propagator.
Resumo:
We determine the critical coupling constant above which dynamical chiral symmetry breaking occurs in a class of QCD motivated models where the gluon propagator has an enhanced infrared behavior. Using methods of bifurcation theory we find that the critical value of the coupling constant is always smaller than the one obtained for QCD. ©2000 The American Physical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work studies through the Floquet theory the stability of breathers generated by the anti-continuous limit. We used the Peyrard-Bishop model for DNA and two kinds of nonlinear potential: the Morse potential and a potential with a hump. The comparison of their stability was done in function of the coupling parameter. We also investigate the dynamic behaviour of the system in stable and unstable regions. Qualitatively, the dynamic of mobile breathers resembles DNA.
Resumo:
We present a search for supersymmetry in the R-parity violating resonant production and decay of smuons and muon sneutrinos in the channels mu ->chi(0)(1)mu, mu ->chi(0)(2,3,4)mu, and nu(mu)->chi(+/-)(1,2)mu. We analyzed 0.38 fb(-1) of integrated luminosity collected between April 2002 and August 2004 with the D0 detector at the Fermilab Tevatron Collider. The observed number of events is in agreement with the standard model expectation, and we calculate 95% C.L. limits on the slepton production cross section times branching fraction to gaugino plus muon, as a function of slepton and gaugino masses. In the framework of minimal supergravity, we set limits on the coupling parameter lambda(')(211), extending significantly previous results obtained in Run I of the Tevatron and at the CERN LEP collider.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Here we present a system of coupled phase oscillators with nearest neighbors coupling, which we study for different boundary conditions. We concentrate at the transition to the total synchronization. We are able to develop exact solutions for the value of the coupling parameter when the system becomes completely synchronized, for the case of periodic boundary conditions as well as for a chain with fixed ends. We compare the results with those calculated numerically.
Search for Signatures of Extra Dimensions in the Diphoton Mass Spectrum at the Large Hadron Collider
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A variational analysis of the spiked harmonic oscillator Hamiltonian -d2/dr2 + r2 + lambda/r5/2, lambda > 0, is reported. A trial function automatically satisfying both the Dirichlet boundary condition at the origin and the boundary condition at infinity is introduced. The results are excellent for a very large range of values of the coupling parameter lambda, suggesting that the present variational function is appropriate for the treatment of the spiked oscillator in all its regimes (strong, moderate, and weak interactions).
Resumo:
It is shown that for singular potentials of the form lambda/r(alpha),the asymptotic form of the wave function both at r --> infinity and r --> 0 plays an important role. Using a wave function having the correct asymptotic behavior for the potential lambda/r(4), it is, shown that it gives the exact ground-state energy for this potential when lambda --> 0, as given earlier by Harrell [Ann. Phys. (NY) 105, 379 (1977)]. For other values of the coupling parameter X, a trial basis;set of wave functions which also satisfy the correct boundary conditions at r --> infinity and r --> 0 are used to find the ground-state energy of the singular potential lambda/r(4) It is shown that the obtained eigenvalues are in excellent agreement with their exact ones for a very large range of lambda values.
Resumo:
The modal and nonmodal linear properties of the Hasegawa-Wakatani system are examined. This linear model for plasma drift waves is nonnormal in the sense of not having a complete set of orthogonal eigenvectors. A consequence of nonnormality is that finite-time nonmodal growth rates can be larger than modal growth rates. In this system, the nonmodal time-dependent behavior depends strongly on the adiabatic parameter and the time scale of interest. For small values of the adiabatic parameter and short time scales, the nonmodal growth rates, wave number, and phase shifts (between the density and potential fluctuations) are time dependent and differ from those obtained by normal mode analysis. On a given time scale, when the adiabatic parameter is less than a critical value, the drift waves are dominated by nonmodal effects while for values of the adiabatic parameter greater than the critical value, the behavior is that given by normal mode analysis. The critical adiabatic parameter decreases with time and modal behavior eventually dominates. The nonmodal linear properties of the Hasegawa-Wakatani system may help to explain features of the full system previously attributed to nonlinearity.