16 resultados para Coupled wave superconductors
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We study numerically the temperature dependencies of specific heat, susceptibility, penetration depth, and thermal conductivity of a coupled (d(x2-y2) + is)-wave Bardeen-Cooper-Schrieffer (BCS) superconductor in the presence of a weak s-wave component (1) on square lattice and (2) on a lattice with orthorhombic distortion. As the temperature is lowered past the critical temperature T-c, a less ordered superconducting phase is created in d(x2-y2) wave, which changes to a more ordered phase in (d(x2-y2) + is) wave at T-c1. This manifests in two second-order phase transitions. The two phase transitions are identified by two jumps in specific heat at T-c and T-c1. The temperature dependencies of the superconducting observables exhibit a change from power-law to exponential behavior as temperature is lowered below T-c1 and confirm the new phase transition. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The temperature dependencies of specific heat and spin susceptibility of a coupled dx2-y2 + idxy superconductor in the presence of a weak dxy component are investigated in the tight-binding model (1) on square lattice and (2) on a lattice with orthorhombic distortion. As the temperature is lowered past the critical temperature Tc, first a less ordered dx2-y2 superconductor is created, which changes to a more ordered dx2-y2 + idxy superconductor at Tcl(< Tc). This manifests in two second order phase transitions identified by two jumps in specific heat at Tc and Tc1. The temperature dependencies of the superconducting observables exhibit a change from power-law to exponential behavior as temperature is lowered below Tc1 and confirm the new phase transition. © 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The influence of bulk light absorption on running photorefractive holograms is investigated. By solving the coupled wave equations we prove that the beam intensities, but not the beam phases, can be calculated by averaging the coupling constant over the crystal thickness. We show the importance of the effect by calculating the dielectric relaxation time at the crystal front, and from that the quantum efficiency from a feedback-controlled experiment with a 2.05 mm thick BTO crystal.We propose to simulate the effect of bulk light absorption by a rude estimate of the average dielectric relaxation time which is related in a simple way to the dielectric relaxation time at the crystal front, in doing so an error of less than 10% is introduced.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study solitons in the condensate trapped in a double-well potential with far-separated wells, when the s-wave scattering length has different signs in the two parts of the condensate. By employing the coupled-mode approximation it is shown that there are unusual stable bright solitons in the condensate, with the larger share of atoms being gathered in the repulsive part. Such unusual solitons derive their stability from the quantum tunneling and correspond to the strong coupling between the parts of the condensate. The ground state of the system, however, corresponds to weak coupling between the condensate parts, with the larger share of atoms being gathered in the attractive part of the condensate.
Resumo:
Periodic waves are investigated in a system composed of a Kuramoto-Sivashinsky-Korteweg-de Vries (KS-KdV) equation linearly coupled to an extra linear dissipative one. The model describes, e.g., a two-layer liquid film flowing down an inclined plane. It has been recently shown that the system supports stable solitary pulses. We demonstrate that a perturbation analysis, based on the balance equation for the net field momentum, predicts the existence of stable cnoidal waves (CnWs) in the same system. It is found that the mean value u(0) of the wave field u in the main subsystem, but not the mean value of the extra field, affects the stability of the periodic waves. Three different areas can be distinguished inside the stability region in the parameter plane (L, u(0)), where L is the wave's period. In these areas, stable are, respectively, CnWs with positive velocity, constant solutions, and CnWs with negative velocity. Multistability, i.e., the coexistence of several attractors, including the waves with several maxima per period, appears at large value of L. The analytical predictions are completely confirmed by direct simulations. Stable waves are also found numerically in the limit of vanishing dispersion, when the KS-KdV equation goes over into the KS one.
Resumo:
Scattering of positronium (Ps) by sodium and potassium atoms has been investigated employing a three-Ps-state coupled-channel model with Ps(ls,2s,2p) states using a time-reversal-symmetric regularized electron-exchange model potential fitted to reproduce accurate theoretical results for PsNa and PsK binding energies. We find a narrow S-wave singlet resonance at 4.58 eV of width 0.002 eV in the Ps-Na system and at 4.77 eV of width 0.003 eV in the Ps-K system. Singlet P-wave resonances in both systems are found at 5.07 eV of width 0.3 eV. Singlet D-wave structures are found at 5.3 eV in both systems. We also report results for elastic and Ps-excitation cross sections for Ps scattering by Na and K.
Resumo:
In this paper, we consider the extension of the Brandt theory of elasticity of the Abrikosov flux-line lattice for a uniaxial superconductor for the case of parallel flux lines. The results show that the effect of the anisotropy is to rescale the components of the wave vector k and the magnetic field and order-parameter wave vector cut off by a geometrical parameter previously introduced by Kogan.
Resumo:
Through a sequence of transformations we relate the propagator for the system of isotropic time-dependent, coupled and driven oscillators with time-varying mass, with those of free particles. We then derive the wave functions and the propagator beyond and at caustics. Finally we study a particular case which appears in quantum optics. © 1990.
Resumo:
We investigate ortho-positronium-lithium-atom (Ps-Li) scattering using static-exchange and three-Ps-state coupled-channel calculations. The present three-PS-state scheme, while closely agreeing with the resonance and binding energies in the Ps-H system, predicts S-, P-, and D-wave resonances at 4.25 eV, 4.9 eV, and, 5.25 eV. respectively, in the electronic spin-singlet channel of Ps-Li scattering. The present calculation also yields a Ps-Li binding in this attractive singlet channel with an approximate binding energy of 0.218 eV, which is in adherence with the recent findings of a chemically stable PsLi system using stocastic variational and quantum Monte Carlo calculations. We further report elastic, Ps(2s)-, and Ps(2p)-excitation cross sections at low to medium energies (0.068-30 eV).
Resumo:
The collapse of trapped Boson-Einstein condensate (BEC) of atoms in states 1 and 2 was studied. When the interaction among the atoms in state i was attractive the component i of the condensate experienced collapse. When the interaction between an atom in state 1 and state 2 was attractive both components experienced collapse. The time-dependant Gross-Pitaevski (GP) equation was used to study the time evolution of the collapse. There was an alternate growth and decay in the number of particles experiencing collapse.
Resumo:
The Bose-Einstein condensate of several types of trapped bosons at ultralow temperature was described using the coupled time dependent Gross-Pitaevskii equation. Both the stationary and time evolution problems were analyzed using this approach. The ground state stationary wave functions were found to be sharply peaked near the origin for attractive interatomic interaction for larger nonlinearity while for a repulsive interatomic interaction the wave function extends over a larger region of space.