32 resultados para Converts
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
An uncomplicated and easy handling prescription that converts the task of checking the unitarity of massive, topologically massive, models into a straightforward algebraic exercise, is developed. The algorithm is used to test the unitarity of both topologically massive higher-derivative electromagnetism (TMHDE) and topologically massive higher-derivative gravity (TMHDG). The novel and amazing features of these effective field models are also discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Temperature dependence and uniaxial magnetocrystalline anisotropy properties of the chemically synthesized 4 nm L1(0)-Fe55Pt45 nanoparticle assembly by a modified polyol route are reported. As-prepared nanoparticles are superparamagnetic presenting fcc structure, and annealing at 550 degrees C converts the assembly into ferromagnetic nanocrystals with large coercivity (H-C>1 T) in an L1(0) phase. Magnetic measurements showed an increasing in the ferromagnetically ordered fraction of the nanoparticles with the annealing temperature increases, and the remanence ratio, S=M-R/M-S congruent to 0.76, suggests an (111) textured film. A monotonic increase of the blocking temperature T-B, the uniaxial magnetocrystalline anisotropy constant K-U, and the coercivity H-C with increasing annealing temperature was observed. Magnetic parameters indicate an enhancement in the magnetic properties due to the improved Fe55Pt45 phase stabilizing, and the room-temperature stability parameter of 67, which indicates that the magnetization should be stable for more than ten years, makes this material suitable for ultrahigh-density magnetic recording application.(c) 2007 American Institute of Physics.
Resumo:
A simple and inexpensive way to fabricate arrays of gold microelectrodes is proposed. Integrated circuit chips are sawed through their middle, normal to the longest axis, leading to destruction of the silicon circuit and rupture of the gold wires that interconnect it with the external terminals. Polishing the resulting rough surface converts the tips of the wires embedded in the chip halves into arrays of gold microdisks of about 25 mu m diameter. The number of active microelectrodes (MEs), of an array depends on the number of pins in the chip, n, being typically (n/2)-4. These MEs can be used individually or externally interconnected in any combination. X-ray images of the chips and micrographs of the resulting surface of the polished arrays have revealed variable distances between neighbor MEs, which are, however, larger than 10 times the radius of the disks. This feature of the MEs prevents diffusional cross-talk between electrodes. The use of these microdisk electrodes for analytical purposes exhibits sigmoidal voltammograms, and chronoamperometric experiments confirm the nonlinear i vs. t(1/2) plots, typical for processes where radial diffusion prevails. Satisfactory uniformity was observed for the response of each electrode of an array, indicating similarity of geometry and disk areas. The potentialities of these MEs were demonstrated by the determination of cadmium at ppb levels using square wave voltammetry with preconcentration. Due to the relative ease with which these MEs can be manufactured and their good performance in (chemical) analysis, wide applications in electrochemistry and electroanalysis is envisioned.
Resumo:
A simple and sensitive method to determine parts per billion (ppb) of atmospheric formaldehyde in situ, using chromotropic acid, is described. A colorimetric sensor, coupled to a droplet of 15.5 muL chromotropic acid, was constructed and used to sample and quantify formaldehyde. The sensor was set up with two optical fibers, a right emitting diode (LED) and two photodiodes. The reference and transmitted light were measured by a photodetection arrangement that converts the signals into units of absorbance. Air was sampled around the chromotropic acid droplet. A purple product was formed and measured after the sampling terminated (typically 7 min). The response is proportional to the sampling period, analyte concentration and sample flow rate. The detection limit is similar to2 ppb and can be improved by using longer sampling times and/or a sampling flow rate higher than that used in this work, 200 mL min(-1). The present technique affords a simple, inexpensive near real-time measurement with very little reagent consumption. The method is selective and highly sensitive. This sensor could be used either for outdoor or indoor atmospheres.
Resumo:
Xerogels obtained from the acid-catalyzed and ultrasound stimulated hydrolysis of TEOS were submitted to heat treatment at temperatures ranging from 60 to 1100 degreesC and studied by small-angle X-ray scattering (SAXS). The SAXS intensity as a function of the modulus of the scattering vector q was obtained in the range from q(0) = 0.19 to q(m) = 4.4 nm(-1). At 60 degreesC the xerogels exhibit an apparent surface fractal structure with a fractal dimension D-s similar to 2.5 in a length scale ranging from 1/q(1) similar to 1 to 1/q(m) similar to 0.22 nm. This structure becomes extremely rough at 120 degreesC (D-s similar to 3) and at 150 degreesC, it apparently converts to a mass fractal with a fractal dimension D similar to 2.4. This may mean an emptying of the pores with preservation of a share of the original mass fractal structure of the wet aged gel, for it had presented a mass fractal dimension D similar to 2.2. A well characterized porous structure formed by 2.0 nm mean size pores with smooth surface of about 380 m(2)/g is formed at 300 degreesC and remains stable until approximately 800 degreesC. At 900 degreesC the SAXS intensity vanishes indicating the disappearance of the pores in the probed length scale. The elimination of the nanopores occurs by a mechanism in which the number of pores diminishes keeping constant their mean size. The xerogels exhibit a foaming phenomenon above 900 degreesC and scatter following Porod's law as does a surface formed by a coarse structure. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Herein we report the synthesis and properties of Fe55Pt45 nanoparticles, both monodisperse and self-assembled into hexagonal close-packed and cubic arrays of 4.0 +/- 0.2 nm size in an L1(0) structure, obtained by a modified polyol process. The new synthetic route improved the control over the particle composition, thereby reducing the temperature required to convert from face-centered cubic (fcc) to face-centered tetragonal (fct) phase by some 30-50 degrees C without additives. Annealing at 550 degrees C for 30 min converts the self-assembled nanoparticles into ferromagnetic nanocrystals with large coercivity, H-C = 11.1 kOe. Reducing the fcc-to-fct (L1(0)) ordering temperature avoided particle coalescence and decreased the loss in particle positional order without compromising the magnetic properties, as is generally observed when additives are used.
Resumo:
An optimization study of the reaction conditions of Fe(TDCPP)Cl when it is used as catalyst in the hydroxylation of cyclohexane by iodosylbenzene (PhIO) has been carried out, It was found that Fe(TDCPP)Cl follows the classical PhIO mechanism described for Fe(TPP)Cl, which involves the monomeric active species Fe-IV(O)P-+. (I). In the optimized condition ([Fe(TDCPP) = 3.0 X 10(-4) mol l(-1) in 1,2-dichloroethane (DCE); ultrasound stirring at 0 degrees C; PhIO/FeP molar ratio = 100), this FeP led to a yield of cyclohexanol (C-ol) of 96% and a turnover number of 96, Therefore, Fe(TDCPP)Cl may be considered a good biomimetic model and a very stable, resistant and selective catalyst, which yields C-ol as the sole product. DCE showed to be a better solvent than dichloromethane (DCM), 1 DCE:1 MeOH mixture or acetonitrile (ACN). Since the Fe-IV(O)P-+. is capable of abstracting hydrogen atom from DCM, MeOH or ACN, the solvent competes with the substrate. Presence of O-2 lowers the yield of C-ol, as it can further oxidize this alcohol to carboxylic acid in the presence of radicals, Presence of H2O also causes a decrease in the yield, since it converts the active species I into Fe-IV(OH)P, which cannot oxidize cyclohexane. Addition of excess imidazole or OH- to the system results in a decrease in the yield of C-ol, due to the formation of the hexacoordinated complexes Fe(TDCPP)Im(2)(+) (low-spin, beta(2) = 2.5 X 10(8) mol(-2) l(2)) and Fe(TDCPP)(OH)(2)(-) (high-spin, beta(2) = 6.3 X 10(7) mol(-2) l(2)), the formation of both Fe(TDCPP)Im(2)(+) and Fe(TDCPP)(OH)(2)(-) complexes were confirmed by EPR studies. The catalytic activities of Fe(TDCPP)C and Fe(TFPP)Cl were compared, the unusually high yields of C-ol with Fe(TFPP)Cl obtained when ultrasound, DCM and O-2 atmosphere were used, suggest that a parallel mechanism involving the mu-oxo dimer form, O-2 and radicals may also be occurring with this FeP, besides the PhIO mechanism.
Resumo:
Bacteria, fungi and plants can convert carbohydrate and phosphoenolpyruvate into chorismate, which is the precursor of various aromatic compounds. The seven enzymes of the shikimate pathway are responsible for this conversion. Shikimate kinase (SK) is the fifth enzyme in this pathway and converts shikimate to shikimate-3-phosphate. In this work, the conformational changes that occur on binding of shikimate, magnesium and chloride ions to SK from Mycobacterium tuberculosis (MtSK) are described. It was observed that both ions and shikimate influence the conformation of residues of the active site of MtSK. Magnesium influences the conformation of the shikimate hydroxyl groups and the position of the side chains of some of the residues of the active site. Chloride seems to influence the affinity of ADP and its position in the active site and the opening length of the LID domain. Shikimate binding causes a closing of the LID domain and also seems to influence the crystallographic packing of SK. The results shown here could be useful for understanding the catalytic mechanism of SK and the role of ions in the activity of this protein.
Resumo:
Vitreous samples were prepared in the (100 - x)% NaPO3-x% MoO3 (0 <= x <= 70) glass-forming system by a modified melt method that allowed good optical quality samples to be obtained. The structural evolution of the vitreous network was monitored as a function of composition by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), Raman scattering, and solid-state nuclear magnetic resonance (NMR) for P-31, Na-23, and Mo-95 nuclei. Addition of MoO3 to the NaPO3 glass melt leads to a pronounced increase in the glass transition temperatures up to x = 45, suggesting a significant increase in network connectivity. For this same composition range, vibrational spectra suggest that the Mo6+ ions are bonded to some nonbridging oxygen atoms (Mo-O- or Mo=O bonded species). Mo-O-Mo bond formation occurs only at MoO3 contents exceeding x = 45. P-31 magic-angle spinning (MAS) NMR spectra, supported by two-dimensional J-resolved spectroscopy, allow a clear distinction between species having two, one, and zero P-O-P linkages. These sites are denoted as Q(2Mo)((2)), Q(1Mo)((2)), and Q(0Mo)((2)), respectively. For x < 0.45, the populations of these sites can be described along the lines of a binary model, according to which each unit of MoO3 converts two Q(nMo)((2)) sites into two Q((n+1)Mo)((2)) sites (n = 0, 1). This structural model is consistent with the presence of tetrahedral Mo(=O)(2)(O-1/2)(2) environments. Indeed, Mo-95 NMR data suggest that the majority of the molybdenum species are four-coordinated. However, the presence of additional six-coordinate molybdenum in the MAS NMR spectra indicates that the structure of these glasses may be more complicated and may additionally involve sharing of network modifier oxide between the network formers phosphorus and molybdenum. This latter hypothesis is further supported by Na-23{P-31} rotational echo double resonance (REDOR) data, which clearly reveal that the magnetic dipole-dipole interactions between P-31 and Na-23 are increasingly diminished with increasing molybdenum content. The partial transfer of modifier from the phosphate to the molybdate network former implies a partial repolymerization of the phosphate species, resulting in the formation of Q(nMo)((3)) species and accounting for the observed increase in the glass transition temperature with increasing MoO3 content that is observed in the composition range 0 <= x <= 45. Glasses with MoO3 contents beyond x = 45 show decreased thermal and crystallization stability. Their structure is characterized by isolated phosphate species [most likely of the P(OMo)(4) type] and molybdenum oxide clusters with a large extent of Mo-O-Mo connectivity.
Resumo:
Termites can degrade up to 90% of the lignocellulose they ingest using a repertoire of endogenous and symbiotic degrading enzymes. Termites have been shown to secrete two main glycoside hydrolases, which are GH1 (EC 3.2.1.21) and GH9 (EC 3.2.1.4) members. However, the molecular mechanism for lignocellulose degradation by these enzymes remains poorly understood. The present study was conducted to understand the synergistic relationship between GH9 (CgEG1) and GH1 (CgBG1) from Coptotermes gestroi, which is considered the major urban pest of São Paulo State in Brazil. The goal of this work was to decipher the mode of operation of CgEG1 and CgBG1 through a comprehensive biochemical analysis and molecular docking studies. There was outstanding degree of synergy in degrading glucose polymers for the production of glucose as a result of the endo-β-1,4-glucosidase and exo-β-1,4-glucosidase degradation capability of CgEG1 in concert with the high catalytic performance of CgBG1, which rapidly converts the oligomers into glucose. Our data not only provide an increased comprehension regarding the synergistic mechanism of these two enzymes for cellulose saccharification but also give insight about the role of these two enzymes in termite biology, which can provide the foundation for the development of a number of important applied research topics, such as the control of termites as pests as well as the development of technologies for lignocellulose-to-bioproduct applications. © 2013 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)