4 resultados para Controlled immobilization

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catecholamines act as neurotransmitters and hormones. Studies conducted to understand the synthesis and metabolism of these monoamines during stress have been the main concern of many authors. This work proposes to investigate the time course of changes in epinephrine and norepinephrine concentration in adrenal gland obtained from rats submitted to acute immobilization stress. The results of the present study indicate that acute immobilization stress during 5 and 15min did not provoke changes in epinephrine and norepinephrine concentrations in adrenal gland in relation to the control group. Such results are justified due to the short time of the stress, showing that the stress did not provoke physiological alteration. The epinephrine and norepinephrine concentrations in adrenal gland increased significantly after the immobilization session in stressed groups during 30 and 50min as compared to control group. This increase probably is due to the emotional component of the immobilization stress. In this way, we suggested that the immobilization stress provoke increase in the biosynthesis of catecholamines in the adrenal gland from rats. However, the results shows that a maximum increase is reached at 30min of immobilization stress and then a decrement of catecholamines levels starts at 50min of the experimental design. This decline in catecholamines level may be consequence of adaptation to stress situations, an increase of the activity of the uptake systems and/or metabolization of catecholamines. In conclusion, these results suggest an effective participation of the adrenal glands to maintain the homeostasis of organism to the stressful conditions. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To evaluate the skeletal muscle glycogen content and plasmatic concentration of interleukin -6 (IL-6), interleukin-4 (IL-4), interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-α) in rats submitted to electrical stimulation sessions during the first three days of ankle immobilization at the position of 90°. Methods: Albinomale Wistar rats(3-4 months) were maintained in vivarium. conditions with food and water ad libitum, Submitted to 12 h photoperiodic cycles of light/dark, and distributed into 7 experimental groups (n = 6): control(C), immobilized 1 day(I1) immobilized 1 day and electrically stimulated(IE1) immobilized 2 days(12), immobilized 2 days and electrically stimulated(IE2), immobilized 3 days(13) and immobilized 3 days and electrically stimulated(IE3). Groups I utilized an acrylic resin orthesis model and groups electrically stimulated (IE) utilized the orthesis and a session of electrotherapy by a Dualpex 961 (biphasic quadratic pulse, 10 Hz, 0.4 ms, 5.0 mA, one 20 min session a day). After the experimental period, the rats were anesthetized with pentobarbital sodium(40 mg/kg) and a blood sample was colleted to evaluate the plasmatic concentration of interleukins by means of the radioimmunoassay method. The soleus and the white portion of the gastrocnemius muscle were colleted for glycogen reserves analysis(GLY). Other groups of rats were used to apply the glucose tolerance test(GTT) and insulin tolerance test(ITT). For statistical analysis, the Kolmogorov-Smirnov normality test followed by ANOVA and the Tukey tests were utilized, with a critical level established at 5%. Results: In ITT test, groups IE enhanced the skeletal muscle glucose uptake, but no changes were observed in GTT after the therapy session, which indicates that electrical stimulation is a sensibilizing method to augment skeletal muscle glucose uptake. The GLY reserves were reduced in I groups, which indicate that disuse altered insulin sensitivity and compromised energetic homeostasis. However. the IE groups displayed an augment in GLY content, suggesting that electrical stimulation restores the enzymatic pathways altered by immobilization. The improvement in GLY was accompanied by an elevation of the plasmatic concentration of IL-6 and TNF-α, showing the participation of these interleukins in the control of metabolic profile. Plasmatic concentrations of IL-10 were elevated only after 3 days of IE while IL-4 did not display any modifications. Conclusion: The results suggest that neuromuscular electricaf stimulation is an important toot in the maintenance of energetic, conditions of musculature submitted to immobilization, and presents multifactor mechanisms linked to interleukins action that converge to maintain the energetic equilibrium of the tissue in disuse.