19 resultados para Control modes

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Pressure controlled ventilation (PCV) is available in anesthesia machines, but there are no studies on its use during CO 2 pneumoperitoneum (CPP). This study aimed at evaluating pressure-controlled ventilation and hemodynamic and ventilatory changes during CPP, as compared to conventional volume controlled ventilation (VCV). METHODS: This study involved 16 dogs anesthetized with thiopental, fentanyl and pancuronium, which were randomly assigned to two groups: VC - volume controlled ventilation (n=8) and PC - pressure controlled ventilation (n=8). Hemodynamic and ventilatory parameters were monitored and recorded in 4 moments: M1 (before CPP), M2 (30 minutes after CPP = 10 mmHg), M3 (30 minutes after CPP=15 mmHg) and M4 (30 minutes after deflation). RESULTS: With CPP, there has been significant increase in tidal volume in PC group; there has been increase in airway pressures (peak and plateau), decrease in compliance with increase in CPP pressure, increase in heart rate, maintenance of mean blood pressure with higher values in the VC group in all stages; there was also increase in right atrium pressure with significant decrease after deflation, decrease in arterial pH with minor variations in PC group, greater arterial pCO 2 stability in PC group, and no significant changes in arterial pO 2. CONCLUSIONS: There were some differences in hemodynamic and ventilatory data between both ventilation control modes (VC and PC). It is possible to use pressure controlled ventilation during CPP, but the anesthesiologist must monitor and take a close look at alveolar ventilation, adjusting inspiratory pressure to ensure proper CO 2 elimination and oxygenation. © Sociedade Brasileira de Anestesiologia, 2005.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents small-signal stability studies of a multimachine power system, considering Static Synchronous Compensators (STATCOM)and discussed control modes of the STATCOM. The Power Sensitivity Model(PSM)is used to represent the electric power system. The study is based on modal analysis and time domain simulations. The results obtained allow concluding that the STATCOM improves the stabilization in the electric power system. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate the efficacy of the formulated mixture clomazone and hexazinone applied in soil or combined with sugarcane mulch, after different periods of permanence without the occurrence of rain. The experiment was carried out in vases under greenhouse conditions in Botucatu, São Paulo, Brazil. The weeds Brachiaria decumbens, Ipomoea grandifolia, Ipomoea hederifolia and Euphorbia heterophylla were sown and covered or not with sugarcane mulch. The experiment was arranged in a complete randomized design with four repetitions. The treatments were displaced in a 3x6 factorial scheme, with the factors being six periods without rain (0, 3, 7, 15, 30, and 60 days) and three modes of herbicide application(on the soil without sugarcane mulch, on and under sugarcane mulch). Control evaluations were carried out at 10, 21, 35 and 42 days after the occurrence of rain. The clomazone + hexazinone mixture promoted an excellent weed control for all the species studied when applied on, under, or without sugarcane mulch. However, the control levels tended to reduce for periods over 60 days without rain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of algorithms for active vibration control in smart structures is an area of interest, mainly due to the demand for better performance of mechanical systems, such as aircraft and aerospace structures. Smart structures, formed using actuators and sensors, can improve the dynamic performance with the application of several kinds of controllers. This article describes the application of a technique based on linear matrix inequalities (LMI) to design an active control system. The positioning of the actuators, the design of a robust state feedback controller and the design of an observer are all achieved using LMI. The following are considered in the controller design: limited actuator input, bounded output (energy) and robustness to parametric uncertainties. Active vibration control of a flat plate is chosen as an application example. The model is identified using experimental data by an eigensystem realization algorithm (ERA) and the placement of the two piezoelectric actuators and single sensor is determined using a finite element model (FEM) and an optimization procedure. A robust controller for active damping is designed using an LMI framework, and a reduced model with observation and control spillover effects is implemented using a computer. The simulation results demonstrate the efficacy of the approach, and show that the control system increases the damping in some of the modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims with the use of linear matrix inequalities approach (LMIs) for application in active vibration control problems in smart strutures. A robust controller for active damping in a panel was designed with piezoelectrical actuators in optimal locations for illustration of the main proposal. It was considered, in the simulations of the closed-loop, a model identified by eigensystem realization algorithm (ERA) and reduced by modal decomposition. We tested two differents techniques to solve the problem. The first one uses LMI approach by state-feedback based in an observer design, considering several simultaneous constraints as: a decay rate, limited input on the actuators, bounded output peak (output energy) and robustness to parametic uncertainties. The results demonstrated the vibration attenuation in the structure by controlling only the first modes and the increased damping in the bandwidth of interest. However, it is possible to occur spillover effects, because the design has not been done considering the dynamic uncertainties related with high frequencies modes. In this sense, the second technique uses the classical H. output feedback control, also solved by LMI approach, considering robustness to residual dynamic to overcome the problem found in the first test. The results are compared and discussed. The responses shown the robust performance of the system and the good reduction of the vibration level, without increase mass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with feedback vibration control of a lightly damped flexible structure that has a large number of well-separated modes. A single active electrical dynamic absorber is used to reduce a particular single vibration mode selectively or multiple modes simultaneously. The absorber is realized electrically by feeding back the structural acceleration at one position to a collocated piezoceramic patch actuator via a controller consisting of one or several second order lowpass filters. A simple analytical method is presented to design a modal control filter that is optimal in that it maximally flattens the mobility frequency response of the target mode, as well as robust in that it works within a prescribed maximum control spillover of 2 dB at all frequencies. Experiments are conducted with a free-free beam to demonstrate its ability to control any single mode optimally and robustly. It is also shown that an active absorber with multiple such filters can effectively control multiple modes simultaneously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a simple but practical feedback control method to suppress the vibration of a flexible structure in the frequency range between 10 Hz and 1 kHz. A dynamic vibration absorber is designed for this, which has a natural frequency of 100 Hz and a normalized bandwidth (twice the damping ratio) of 9.9. The absorber is realized electrically by feeding back the structural acceleration at one position on the host structure to a collocated piezoceramic patch actuator via an analog controller consisting of a second-order lowpass filter. This absorber is equivalent to a single degree-of-freedom mechanical oscillator consisting of a serially connected mass-spring-damper system. A first-order lowpass filter is additionally used to improve stability at very high frequencies. Experiments were conducted on a free-free beam embedded with a piezoceramic patch actuator and an accelerometer at its center. It is demonstrated that the single absorber can simultaneously suppress multiple vibration modes within the control bandwidth. It is further shown that the control system is robust to slight changes in the plant. The method described can be applied to many other practical structures, after retuning the absorber parameters for the structure under control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with an energy pumping that occurs in a (MEMS) Gyroscope nonlinear dynamical system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We also developed a linear optimal control design for reducing the oscillatory movement of the nonlinear systems to a stable point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

States that control is of the essence in cybernetics. Summarizes the dynamic equations for a flexible one-link manipulator moving in the horizontal plane. Employs the finite element method, based on elementary beam theory, during the process of formulation. Develops and instruments a one-link flexible manipulator in order to control its vibration modes. Uses a simple second-order vibration model which permits vibrations on the rod to be estimated using the hub angle. The validation of the dynamic model and the structural analysis of the flexible manipulator is reached using proper infrared cameras and active light sources for determining actual positions of objects in space. Shows that the performance of the control is satisfactory, even under perturbation action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with a stochastic optimal control problem involving discrete-time jump Markov linear systems. The jumps or changes between the system operation modes evolve according to an underlying Markov chain. In the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (TN), or the occurrence of a crucial failure event (τΔ), after which the system is brought to a halt for maintenance. In addition, an intermediary mixed case for which T represents the minimum between TN and τΔ is also considered. These stopping times coincide with some of the jump times of the Markov state and the information available allows the reconfiguration of the control action at each jump time, in the form of a linear feedback gain. The solution for the linear quadratic problem with complete Markov state observation is presented. The solution is given in terms of recursions of a set of algebraic Riccati equations (ARE) or a coupled set of algebraic Riccati equation (CARE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In metallic restorations, the polymerization of dual-curing resin cements depends exclusively on chemical activation. The effect of the lack of photoactivation on the strength of these cements has been rarely studied. This study evaluated the influence of activation modes on the diametral tensile strength (DTS) of dual-curing resin cements. Base and catalyst pastes of Panavia F, Variolink II, Scotchbond Resin Cement, Rely X and Enforce were mixed and inserted into cylindrical metal moulds (4 x 2 mm). Cements were either: 1) not exposed to light (chemical activation = self-cured groups) or 2) photoactivated through mylar strips (chemical and photo-activation = dual-cured groups) (n = 10). After a 24 h storage in 37 masculineC distilled water, specimens were subjected to compressive load in a testing machine. A self-curing resin cement (Cement-It) and a zinc phosphate cement served as controls. Comparative analyses were performed: 1) between the activation modes for each dual-curing resin cement, using Students t test; 2) among the self-cured groups of the dual-curing resin cements and the control groups, using one-way ANOVA and Tukeys test (alpha = 0.05). The dual-cured groups of Scotchbond Resin Cement (53.3 MPa), Variolink II (48.4 MPa) and Rely X (51.6 MPa) showed higher DTS than that of self-cured groups (44.6, 40.4 and 44.5 MPa respectively) (p < 0.05). For Enforce (48.5 and 47.8 MPa) and Panavia F (44.0 and 43.3 MPa), no significant difference was found between the activation modes (p > 0.05). The self-cured groups of all the dual-curing resin cements presented statistically the same DTS as that of Cement-It (44.1 MPa) (p > 0.05), and higher DTS than that of zinc phosphate (4.2 MPa). Scotchbond Resin Cement, Variolink II and Rely X depended on photoactivation to achieve maximum DTS. In the absence of light, all the dual-curing resin cements presented higher DTS than that of zinc phosphate and statistically the same as that of Cement-It (p > 0.05).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the non-linear dynamics of a MEMS Gyroscope system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We demonstrated that this model has an unstable behavior. Control problems consist of attempts to stabilize a system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. We also developed a particle swarm optimization technique for reducing the oscillatory movement of the nonlinear system to a periodic orbit. © 2010 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: An appropriate selection of instruments is essential to perform a correct debonding technique, by properly removing orthodontic brackets and the remaining resin. Objective: The aim of this study was to evaluate three methods of remaining resin removal on enamel surface after bracket debonding, by means of Scanning Electron Microscopy (SEM). Methods: Eighteen bovine incisors were selected and divided into three groups (A, B and C) of six teeth each. Before bracket bonding, epoxy resin casts were obtained by impression of the teeth with addition silicon, in order to register baseline enamel characteristics and representing the control group. The methods for remaining resin removal were: Group A - gross and medium granulation Soflex discs; Group B - carbide bur in low-speed; Group C - carbide bur in high-speed. Soflex polishing system fine and ultrafine granulation discs were used for Group A, rubber tips for Groups B and C, and polishing paste for all groups. After polishing, impression of teeth were taken and casts were analyzed by means of SEM. The baseline enamel characteristics (Control Group) were compared to the final aspect of enamel to determine the method that generated less enamel abrasion. Results and Conclusion: The remaining resin removal by carbide bur in low-rotation, and enamel polished with rubber tips followed by polishing paste produced the smaller damage to the enamel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In last decades, control of nonlinear dynamic systems became an important and interesting problem studied by many authors, what results the appearance of lots of works about this subject in the scientific literature. In this paper, an Atomic Force Microscope micro cantilever operating in tapping mode was modeled, and its behavior was studied using bifurcation diagrams, phase portraits, time history, Poincare maps and Lyapunov exponents. Chaos was detected in an interval of time; those phenomena undermine the achievement of accurate images by the sample surface. In the mathematical model, periodic and chaotic motion was obtained by changing parameters. To control the chaotic behavior of the system were implemented two control techniques. The SDRE control (State Dependent Riccati Equation) and Time-delayed feedback control. Simulation results show the feasibility of the bothmethods, for chaos control of an AFM system. Copyright © 2011 by ASME.