74 resultados para Control charts

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we propose new control charts for monitoring the mean vector and the covariance matrix of bivariate processes. The traditional tools used for this purpose are the T (2) and the |S| charts. However, these charts have two drawbacks: (1) the T (2) and the |S| statistics are not easy to compute, and (2) after a signal, they do not distinguish the variable affected by the assignable cause. As an alternative to (1), we propose the MVMAX chart, which only requires the computation of sample means and sample variances. As an alternative to (2), we propose the joint use of two charts based on the non-central chi-square statistic (NCS statistic), named as the NCS charts. Once the NCS charts signal, the user can immediately identify the out-of-control variable. In general, the synthetic MVMAX chart is faster than the NCS charts and the joint T (2) and |S| charts in signaling processes disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we consider the T(2) chart with double sampling to control bivariate processes (BDS chart). During the first stage of the sampling, n(1) items of the sample are inspected and two quality characteristics (x; y) are measured. If the Hotelling statistic T(1)(2) for the mean vector of (x; y) is less than w, the sampling is interrupted. If the Hotelling statistic T(1)(2) is greater than CL(1), where CL(1) > w, the control chart signals an out-of-control condition. If w < T(1)(2) <= CL(1), the sampling goes on to the second stage, where the remaining n(2) items of the sample are inspected and T(2)(2) for the mean vector of the whole sample is computed. During the second stage of the sampling, the control chart signals an out-of-control condition when the statistic T(2)(2) is larger than CL(2). A comparative study shows that the BDS chart detects process disturbances faster than the standard bivariate T(2) chart and the adaptive bivariate T(2) charts with variable sample size and/or variable sampling interval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, three single-control charts are proposed to monitor individual observations of a bivariate Poisson process. The specified false-alarm risk, their control limits, and ARLs were determined to compare their performances for different types and sizes of shifts. In most of the cases, the single charts presented better performance rather than two separate control charts ( one for each quality characteristic). A numerical example illustrates the proposed control charts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have shown that adaptive X control charts are quicker than traditional X charts in detecting small to moderate shifts in a process. In this article, we propose a joint statistical design of adaptive X and R charts having all design parameters varying adaptively. The process is subjected to two independent assignable causes. One cause changes the process mean and the other changes the process variance. However, the occurrence of one kind of assignable cause does not preclude the occurrence of the other. It is assumed that the quality characteristic is normally distributed and the time that the process remains in control has exponential distribution. Performance measures of these adaptive control charts are obtained through a Markov chain approach. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The T-2 and the generalized variance vertical bar S vertical bar charts are used for monitoring the mean vector and the covariance matrix of multivariate processes. In this article, we propose for bivariate processes the use of the T-2 and the VMAX charts. The points plotted on the VMAX chart correspond to the maximum of the sample variances of the two quality characteristics. The reason to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar is the user's familiarity with the computation of simple sample variances; we can't say the same with regard to the computation of the generalized variance vertical bar S vertical bar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a general model for adaptive c, np, u and p control charts in which one, two or three design parameters (sample size, sampling interval and control limit width) switch between two values, according to the most recent process information. For a given in-control average sampling rate and a given false alarm rate, the adaptive chart detects changes in the process much faster than a chart with fixed parameters. Moreover, this study also offers general guidance on how to choose an effective design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we consider the synthetic control chart with two-stage sampling (SyTS chart) to control bivariate processes. During the first stage, one item of the sample is inspected and two correlated quality characteristics (x;y) are measured. If the Hotelling statistic T1 2 for these individual observations of (x;y) is lower than a specified value UCL 1 the sampling is interrupted. Otherwise, the sampling goes on to the second stage, where the remaining items are inspected and the Hotelling statistic T2 2 for the sample means of (x;y) is computed. When the statistic T2 2 is larger than a specified value UCL2, the sample is classified as nonconforming. According to the synthetic control chart procedure, the signal is based on the number of conforming samples between two neighbor nonconforming samples. The proposed chart detects process disturbances faster than the bivariate charts with variable sample size and it is from the practical viewpoint more convenient to administer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model for the joint economic design of X̄ and R control charts is developed. This model assumes that the process is subject to two assignable causes. One assignable cause shifts the process mean; the other shifts the process variance. The occurrence of the assignable cause of one kind does not block the occurrence of the assignable cause of another kind. Consequently, a second process parameter can go out-of-control after the first process parameter has gone out-of-control. A numerical study of the cost surface to the model considered has revealed that it is convex, at least in the interest region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, we evaluate the performance of the T2 chart based on the principal components (PC chart) and the simultaneous univariate control charts based on the original variables (SU X̄ charts) or based on the principal components (SUPC charts). The main reason to consider the PC chart lies on the dimensionality reduction. However, depending on the disturbance and on the way the original variables are related, the chart is very slow in signaling, except when all variables are negatively correlated and the principal component is wisely selected. Comparing the SU X̄, the SUPC and the T 2 charts we conclude that the SU X̄ charts (SUPC charts) have a better overall performance when the variables are positively (negatively) correlated. We also develop the expression to obtain the power of two S 2 charts designed for monitoring the covariance matrix. These joint S2 charts are, in the majority of the cases, more efficient than the generalized variance |S| chart.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose a new statistic to control the covariance matrix of bivariate processes. This new statistic is based on the sample variances of the two quality characteristics, in short VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these two variances. The reasons to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar is its faster detection of process changes and its better diagnostic feature; that is, with the VMAX statistic it is easier to identify the out-of-control variable. We study the double sampling (DS) and the exponentially weighted moving average (EWMA) charts based on the VMAX statistic. (C) 2008 Elsevier B.V. All rights reserved.