172 resultados para Conjuntos Fuzzy
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Obesidade e comumente definida como um excesso de gordura corporal, porém diante da dificuldade em mensurar tal gordura diretamente, esta tem sido definida como um excesso de peso mais do que um excesso de gordura corporal, que tem como desdobramento a ocorrência de doenças associadas e/ou prejuízos a saúde do indivíduo (4). Atualmente, o excesso de massa corpórea e verificado por meio de um Indice de Massa Corpórea (IMC), que considera o quociente entre o peso corporal (kg) e a estatura elevada ao quadrado (m2). Indivíduos com sobrepeso apresentam IMC de 25 at e 29; 9 kg=m2, e com obesidade apresentam IMC de 30 Kg=m2 ou mais, de acordo com a OMS (1). A identificação das causas da obesidade não é trivial e objetiva. Especialistas reconhecem que a obesidade e uma doença crônica, de difícil tratamento, denominada multifatorial, envolvendo em sua gênese diversos aspectos, entre eles: o consumo alimentar, aspectos ambientais, genéticos, psicossociais, entre outros. objetivo deste trabalho foi desenvolver um modelo baseado em teoria dos conjuntos Fuzzy para a classificação de obesidade levando em consideração as suas causas, e compará-lo com um modelo de regressão logística através da curva ROC. Para estudar as causas da obesidade na população de moradores da região do Distrito Sul de Campinas, foram coletados dados de uma amostra aleatória de 651 indivíuos, por meio de entrevista domiciliar. No primeiro estágio amostral, a partir do cadastro de domicílios residenciais dos agentes comunitários de saúde, foram aleatoriamente sorteados 920 domicílios (15% a mais do inicialmente previsto para cobrir perdas). Foram coletados dados de identificação geral, como: nome, idade, sexo, anos de escolaridade, tipo de ocupação e dados de consumo alimentar. O diagnóstico foi observado através do IMC. Num estudo preliminar, no modelo fuzzy foram consideradas como variáveis... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Pós-graduação em Ciências Ambientais - Sorocaba
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O objetivo do artigo foi avaliar o uso da lógica fuzzy para estimar possibilidade de óbito neonatal. Desenvolveu-se um modelo computacional com base na teoria dos conjuntos fuzzy, tendo como variáveis peso ao nascer, idade gestacional, escore de Apgar e relato de natimorto. Empregou-se o método de inferência de Mamdani, e a variável de saída foi o risco de morte neonatal. Criaram-se 24 regras de acordo com as variáveis de entrada, e a validação do modelo utilizou um banco de dados real de uma cidade brasileira. A acurácia foi estimada pela curva ROC; os riscos foram comparados pelo teste t de Student. O programa MATLAB 6.5 foi usado para construir o modelo. Os riscos médios foram menores para os que sobreviveram (p < 0,001). A acurácia do modelo foi 0,90. A maior acurácia foi com possibilidade de risco igual ou menor que 25% (sensibilidade = 0,70, especificidade = 0,98, valor preditivo negativo = 0,99 e valor preditivo positivo = 0,22). O modelo mostrou acurácia e valor preditivo negativo bons, podendo ser utilizado em hospitais gerais.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
The information retrieval process involves subjective, imprecise and vague concepts, such as "information need", "relevance", and the very concept of "information". The main information retrieval models treat these concepts accurately, represented by a single numerical value. The fuzzy logic, while operating with the uncertainty of natural phenomena in a systematic and rigorous manner, represents a promising alternative to solve some problems related to information retrieval. This paper presents the fuzzy logic and some examples of its use in information retrieval systems (IRS).
Resumo:
Pós-graduação em Ciências Ambientais - Sorocaba
Resumo:
Pós-graduação em Ciências Ambientais - Sorocaba
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
The objective of this work is to determine the membership functions for the construction of a fuzzy controller to evaluate the energy situation of the company with respect to load and power factors. The energy assessment of a company is performed by technicians and experts based on the indices of load and power factors, and analysis of the machines used in production processes. This assessment is conducted periodically to detect whether the procedures performed by employees in relation to how of use electricity energy are correct. With a fuzzy controller, this performed can be done by machines. The construction of a fuzzy controller is initially characterized by the definition of input and output variables, and their associated membership functions. We also need to define a method of inference and a processor output. Finally, you need the help of technicians and experts to build a rule base, consisting of answers that provide these professionals in function of characteristics of the input variables. The controller proposed in this paper has as input variables load and power factors, and output the company situation. Their membership functions representing fuzzy sets called by linguistic qualities, as “VERY BAD” and “GOOD”. With the method of inference Mandani and the processor to exit from the Center of Area chosen, the structure of a fuzzy controller is established, simply by the choice by technicians and experts of the field energy to determine a set of rules appropriate for the chosen company. Thus, the interpretation of load and power factors by software comes to meeting the need of creating a single index that indicates an overall basis (rational and efficient) as the energy is being used.
Resumo:
Este trabalho apresenta uma investigação sobre o emprego de FMEA (Failure Mode and Effect Analysis) de Processo com a exposição de irregularidades na sua utilização. O método AHP (Analytic Hierarchy Process) e os Conjuntos Fuzzy são aplicados no estudo das práticas atuais de utilização de FMEA. O AHP é aplicado para a priorização das irregularidades quanto à gravidade de sua ocorrência. Os Conjuntos Fuzzy são aplicados para avaliação do desempenho da utilização de FMEA em algumas empresas do ramo automotivo. Como resultado, tem-se a aceitação de oito e a não aceitação de três dos onze formulários de FMEA averiguados.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG