24 resultados para Complex Geometry

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article presents a detailed study of the application of different additive manufacturing technologies (sintering process, three-dimensional printing, extrusion and stereolithographic process), in the design process of a complex geometry model and its moving parts. The fabrication sequence was evaluated in terms of pre-processing conditions (model generation and model STL SLI), generation strategy and physical model post-processing operations. Dimensional verification of the obtained models was undertook by projecting structured light (optical scan), a relatively new technology of main importance for metrology and reverse engineering. Studies were done in certain manufacturing time and production costs, which allowed the definition of an more comprehensive evaluation matrix of additive technologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The demand by high performance materials that have to support severe service conditions at a reasonable cost has been forcing the powder metallurgy to improve constantly. The most recent and more important innovation in the area is the process of powder injection.Powder injection molding (PIM) is a technology capable of producing a new range of components from powders. This advanced technology overcomes the existent limitations in the forming of products with complex geometry. The process presents countless variations which are used in the industry today. Invariably, it consists of mixing the powders and a thermo-plastic binder, injecting the mass in the mold in the wanted form, debinding, sintering and making optional secondary operations, as for example, machinery.The purpose of this work is to review the metal injection molding techniques and apply the low pressure injection molding process to family of parts using metallic powder with 10 mum particle size. This work also comments the design and construction of a low pressure injection machine and injection molds. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Observed deviations from traditional concepts of soil-water movement are considered in terms of fractals. A connection is made between this movement and a Brownian motion, a random and self-affine type of fractal, to account for the soil-water diffusivity function having auxiliary time dependence for unsaturated soils. The position of a given water content is directly proportional to t(n), where t is time, and exponent n for distinctly unsaturated soil is less than the traditional 0.50. As water saturation is approached, n approaches 0.50. Macroscopic fractional Brownian motion is associated with n < 0.50, but shifts to regular Brownian motion for n = 0.50.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of this research work was to obtain two formulations of ablative composites. These composites are also known as ablative structural composites, for applications in atmospherically severe conditions according to the high-temperature, hot gaseous products flow generated from the burning of solid propellants. The formulations were manufactured with phenolic resin reinforced with chopped carbon fiber. The composites were obtained by the hot compression molding technique. Another purpose of this work was to conduct the physical and chemical characterization of the matrix, the reinforcements and the composites. After the characterization, a nozzle divergent of each formulation was manufactured and its performance was evaluated through the rocket motor static firing test. According to the results found in this work, it was possible to observe through the characterization of the raw materials that phenolic resins showed peculiarities in their properties that differentiate one from the other, but did not exhibit significant differences in performance as a composite material for use in ablation conditions. Both composites showed good performance for use in thermal protection, confirmed by firing static tests (rocket motor). Composites made with phenolic resin and chopped carbon fiber showed that it is a material with excellent resistance to ablation process. This composite can be used to produce nozzle parts with complex geometry or shapes and low manufacturing cost.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Airplane Motor Cradles have a complex geometry, since they require different conbinations between different tubes and TIG welded in several angles. In T-25 aircraft and Universal T-27 Tucano (EMBRAER / FAB), besides having to bear the engine balance, these components maintain fixed the nose landing gear in another extremity. They are considered critical to flight safety, and for this reason, the aviation standards are extremely rigid in their production, imposing a zero index” of defects on the final weld metal quality. These structures may be containing an historical of welding repairs, whose effects on their structural integrity are not computed. In this work we analyzed the standardised AISI 4130 steel and the raw steel of tubes to the Airplane Motor Cradles. First of all, microscopy and microanalysis of the base steel, then we analyzed the effects of the TIG weld. Tensile testing was conducted to measure the difference between the mechanical properties of standardised steel and without this treatment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

After confirming the high specific mechanical properties of composite materials by scientific studies conducted over the last decades, one of the challenges of this new class of materials is the ability to achieve mass production at a more affordable cost, which has become indispensable. The Resin Transfer Molding (RTM) is an excellent method for manufacturing composite materials. Despite being a process widely used by international companies in the production of high performance structural composites, only a short time the national aviation industry has shown interest in implementing this type of processing to more complex structures and greater structural responsibility. In aeronautical projects, the reproducibility and the relative low cost of this process, several studies have been performed in Brazil for learning and perfecting this technique. This process is suitable for producing polymer components both simple as complex geometry, and allows to achieve consistent thickness, with high quality finish and without limiting range. Polymeric composite components for the high mechanical stress applications such as aircraft structures, satellites, etc., require a strict control of volume fractions of the composite constituents, beyond the knowledge of their mechanical and thermal properties. Therefore, in this experimental work degree study on the mechanical, thermal and of porosity composites processed by RTM processed characterization was performed. This characterization was performed targeting a possible aerospace application of this composite material. For the production of composites, process equipment (RTM RTM injector Radius 2100cc) was used. The processed carbono/epoxy composites were characterized via flexure tests mechanically and thermally analysis via DMA, DSC and TGA. To determine the volume fraction of fibers, the composite samples were analyzed via matrix digestion (ASTM D3171) ... (Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction and Objective: Photoelasticity consists of an experimental technique of stress analysis. This technique is very used in most different areas including Dentistry. This literature review presents the several applications of photoelastic technique in Dentistry the several applications of photoelastic technique in Dentistry as well as its advantages and disadvantages. Literature review: Based on this method of analysis, it is possible the verification of the stress distribution and deformation in structures with complex geometry as maxilla and mandible. It can be used to evaluate the distribution of stress on several types of prosthesis as removable partial denture systems with different retention systems, conventional implant prosthesis, overdentures and Brånemark protocols. Moreover, photoelasticity can be used to assess the stress generated by various by various orthodontic movements, different orthodontic systems and different materials (orthodontic wires). In addition, it is used to analyze different defects of maxillectomy, splint types on traumatized tooth and post-core restoration methods. This technique can also be used to assess dental instruments such as evaluation of different designs of periodontal probe. Conclusion: The photoelastic analysis has been a technique of great importance in health area studies, more specifically in Dentistry. Based on this method of analysis, it is possible to measure the stress distribution and deformation in structures with complex geometry as maxilla and mandible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid Ni(C(5)H(10)NO(3)S)(2) . 2H(2)O complex was prepared and characterized. Electronic absorption spectrum shows an octahedral geometry for the complex. Infrared spectroscopy analysis shows that the metal atom is coordinated to the ligand through (COO(-)) and (S = O) groups. Thermal analysis confirmed the composition of the complex and suggests that the water molecules are not coordinated to the metal ion. The complex shows extremely high solubility in water. (C) 2000 Elsevier B.V. S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthesis and characterization of a new Pt(II)-mimosine complex are described. Elemental, mass spectrometry and thermal analyses for the complex are consistent with the formula [PtCl2(C8H10N2O4)]center dot 1.5H(2)O. C-13 NMR, N-15 NMR and infrared spectroscopy indicate coordination of the ligand to Pt(II) through the N and O atoms in a square-planar geometry. The final residue after thermal treatment was identified as metallic Pt. The complex is soluble in dimethylsulfoxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new palladium(II) complex with methionine sulfoxide was synthesized and characterized by a set of chemical and spectroscopic techniques. Elemental and mass spectrometry analyses of the solid complex fit to the composition [Pd(C5H10NO3S)(2)]center dot H2O. C-13 NMR, [H-1-N-15] NMR and infrared spectra indicate coordination of the amino acid to Pd(II) through the carboxylate and amino groups in a square planar geometry. The complex is soluble in water.Biological activity was evaluated by cytotoxic analysis using HeLa cells. Determination of cell death was assessed using a tetrazolium salt colorimetric assay, which reflects the cells viability. After incubation for 48 h, 20% of cell death was achieved at a concentration of 200 mu mol L-1 of the complex. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural, magnetic and spectroscopic data of a new trinuclear copper(II) complex with the ligand aspartame (apm) are described. [Cu(apm)(2)CU(mu-N,O:O'-apm)(2)(H2O)Cu(apm)(2)(H2O)]-5H(2)O crystallizes in the triclinic system, space group P1 (#1) with a = 7.3300(1) angstrom, b = 15.6840(1) angstrom, c = 21.5280(1) angstrom, alpha = 93.02(1)degrees, beta = 93.21 (1)degrees, gamma = 92.66(1)degrees and Z = 1. Aspartame coordinates to Cu(II) through the carboxylate and beta-amino groups. The carboxylate groups of the two central ligands act as bidentate bridges in a syn-anti conformation while the carboxylate groups of the four peripheral ligands are monodentate in a syn conformation. The central copper ion is in a distorted square pyramidal geometry with the apical position being occupied by one oxygen atom of the water molecule. The two terminal copper(II) atoms are coordinated to the ligands in the same position but their coordination sphere differs from each other due to the fact that one copper atom has a water molecule in an apical position leading to an octahedral coordination sphere while the other copper atom is exclusively coordinated to aspartame ligands forming a distorted square pyramidal coordination sphere. Thermal analysis is consistent with the X-ray structure. EPR spectra and CV curves indicate a rupture of the trinuclear framework when this complex is dissolved in ethanol or DMF, forming a mononuclear species, with a tetragonal structure. (c) 2005 Elsevier B.V. All rights reserved.