154 resultados para Compensatory technique
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This study investigated the following aspects regarding a soakaway, i.e. an infiltration well: i) entrance filter device; ii) permeability of the geotextile; and iii) emptying time. The 3.6 m³ infiltration well drains a roof area of 241.8 m². The entrance device is made up of layers of sand, gravel and geotextile set on a metal structure. The concrete rings that form the lateral walls were covered with geotextile, and bricks were laid between the soil and concrete rings. The infiltration well remained in operation during the entire testing period, and specific events were simulated to measure the emptying time. Permeability and fine particle tests were carried out after eight months of operation. Samples of geotextile taken from the bottom, the walls and the entrance device presented average permeability reductions of approximately 50.7%, 7.7% and 21.2%, respectively. The sand in the entrance device retained around 34.8% of fine particles and the gravel retained 0.13% in the same period. The infiltration rate was approximately 34.7 mm/h. The R2 coefficient for measured and calculated times was 0.97.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study investigated the effect of slope and antecedent soil moisture on the water depth stored and percolated on extensive green roofs built in pilot scale. For this purpose, slopes of 10, 20 and 30% were investigated. Moisture was measured before and after each test in order to determine the differential moisture (∆U). The experimental runoff and percolated flow were analyzed by varying moisture and slope. Apparent color and turbidity were measured on runoff and percolated flow for each one of the modules. The results yielded that for the slopes of 10% the smaller values of runoff was obtained (average of 1,01% ± 0,7%). For the others slopes (20% and 30%), the runoffs were around 35% ± 15%. The sum of runoff and percolated water results in 77% (average) for slope of 10% and 80% for 20% and 30%. The slope and moisture have explained 87% of data for retained water and 81% for runoff. For percolated flow the inverse trend was observed. The retained water was 11,6±1,4mm for the module with 10% of slope, around 10,0±1,2 mm for the module with 20% of slope, and about 9,5±1,1 mm for the module with 30%. The results pointed out that both slope and antecedent moisture are crucial for runoff reduction and for material transportation.
Resumo:
This work demonstrates the usefulness of the Open Photoacoustic Cell Technique to study the effects of irradiance and temperature on photosynthesis. bl vivo and ill situ photosynthetic induction measurements were performed in three different species of eucalyptus plants (E. grandis, E. urophylla, and E, urograndis) previously dark-adapted at different temperatures. Photosynthetic activity curves were built as a function of light intensity, indicating the occurrence of photosynthesis saturation. E. urograndis presented higher photosynthetic activity than the other species, especially at low temperature, indicating its tolerance to stress conditions. The incidence of background saturation light of various intensities allowed the irt situ study of photoinhibition in eucalyptus plants through open photoacoustics. (C) 2001 MAIK Nauka/Interperiodica.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The marsh deer (Blastocerus dichotomus) is an endangered species froth the marshlands of central South America. Its population has declined in several regions due to the loss of available habitat caused by human activities, especially the construction of hydroelectric darns. The capture of individual deer is critical for research programs and population management. This report describes a novel live-capture technique, which uses a helicopter to drive the animals into a terrain that restricts their movement such as thick vegetation or deep water (60-120 cm in depth). Following confinement, animals are manually restrained. The short pursuit time (median = 2 thin), low mortality rate (0.82-3.28%), and the absence of injury to both the capture team and animals suggest that this method is appropriate for the safe capture of this species. Body temperature correlated with the pursuit time (R-2 = 0.15) but was not significantly altered with pursuit times <3 min.
Resumo:
X-rays were initially used for the inspection of special-purpose wood pieces for quantitative evaluation properties of different species. X-ray densitometry has had its use expanded ill dendroclimatology of Picea engelmannii trees. Subsequent laboratories developed applications of X-ray densitometry for environmental, wood science and technology, and related areas. This paper describes the basic methodology of X-ray densitometry applied to the eucalypt wood analysis, as well its presenting the results of applications in three areas: (i) evaluation of wood biodegradation by white rot fungi, (ii) detection of sapwood and heartwood, and (iii) determination of the effect of management oil wood properties. The wood decayed by white rot fungi was detected by X-ray densitometry with it decreasing wood density due to the biodegradation of cell wall components. The sapwood and heartwood of eucalypts were separated in response to the attenuation of X-rays, reflected by the wood anatomical structure and chemical composition. Also, Ill eucalypt trees after the application of irrigation and i characteristic wood density profiles were detected. Ill addition, the significant potential of X-ray densitometry for eucalypt wood research and analysis is discussed.
Resumo:
Cells of Mikania glomerata, Cephaelis ipecacuanha and Maytenus aquifolia were co-cultured in a two-phase system using filter paper as a solid support. The species were co-cultured in all possible paired combinations. Interaction between Mikania and Maytenus cells resulted in increased biomass production of Maytenus cells, but the friedelin content was reduced. Co-cultivation of Cephaelis and Mikania cells enhanced coumarin content, but inhibited the growth of Mikania cells. However, yield of emetine as well as Cephaelis biomass accumulation were positively stimulated by the co-cultivation. Results indicate a possible occurrence of allelopathy in such a system.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Gelatin microparticles containing propolis extractive solution (PES) were prepared by spray-drying technique. The optimization of the spray-drying operating conditions and the proportions of gelatin and mannitol were investigated. Regular particle morphology was obtained when mannitol was used, whereas mannitol absence produced a substantial number of coalesced and agglomerated microparticles. Microparticles had a mean diameter of 2.70 mum without mannitol and 2.50 mum with mannitol. The entrapment efficiency for propolis of the microparticles was upto 41 % without mannitol and 39% with mannitol. The microencapsulation by spray-drying technique maintained the activity of propolis against Staphylococcus aureus. These gelatin microparticles containing propolis would be useful for developing intermediary or eventual propolis dosage form without the PES' strong and unpleasant taste, aromatic odour, and presence of ethanol. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Thermal analysis has been extensively used to obtain information about drug-polymer interactions and to perform pre-formulation studies of pharmaceutical dosage forms. In this work, biodegradable microparticles of poly(D,L-lactide-co-glycolide) (PLGA) containing ciprofloxacin hydrochloride (CP) in various drug:polymer ratios were obtained by spray drying. The main purpose of this study was to investigate the effect of the spray drying process on the drug-polymer interactions and on the stability of microparticles using differential scanning calorimetry (DSC), thermogravimetry (TG) and derivative thermogravimetry (DTG) and infrared spectroscopy (IR). The results showed that the high levels of encapsulation efficiency were dependant on drug:polymer ratio. DSC and TG/DTG analyses showed that for physical mixtures of the microparticles components the thermal profiles were different from those signals obtained with the pure substances. Thermal analysis data disclosed that physical interaction between CP and PLGA in high temperatures had occurred. The DSC and TG profiles for drug-loaded microparticles were very similar to the physical mixtures of components and it was possible to characterize the thermal properties of microparticles according to drug content. These data indicated that the spray dryer technique does not affect the physicochemical properties of the microparticles. In addition, the results are in agreement with IR data analysis demonstrating that no significant chemical interaction occurs between CP and PLGA in both physical mixtures and microparticles. In conclusion, we have found that the spray drying procedure used in this work can be a secure methodology to produce CP-loaded microparticles. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Two-colour photocurrent detection technique for coherent control of a single InGaAs/GaAs quantum dot
Resumo:
We present a two-colour photocurrent detection method for coherent control of a single InGaAs/GaAs self-assembled quantum dot. A pulse shaping technique provides a high degree of control over picosecond optical pulses. Rabi rotations on the exciton to biexciton transition are presented, and fine structure beating is detected via time-resolved measurements. (c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim