8 resultados para Community Networks
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Objective: To understand the experience of primary caregivers of heart transplant recipients. Methods: A phenomenological approach was used to understand the caregivers' experience of caring for a heart transplant patient. In-depth interviews were conducted with 11 caregivers, in a Brazilian hospital, from December 2008 to March 2009. Results: Following the transplant, caregivers' lives change drastically; their priority becomes providing care for their relative. Despite successful transplant results, the uncertainty about future remains, generating permanent distress. Anxiety is exacerbated by familial or economic problems and, consequently, many participants turn to their local communities for support. Some caregivers learn from the experience and plan return to regular activities. Others feel helpless, unable to overcome personal losses and difficulties. Conclusions: Nurses are ideally placed to lead the way by providing family-centered support and education for caregivers of heart recipients. Listening to the concerns of family caregivers seems to be an essential aspect of effective interventions. © 2013 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Wireless Sensor Networks (WSN) are a special kind of ad-hoc networks that is usually deployed in a monitoring field in order to detect some physical phenomenon. Due to the low dependability of individual nodes, small radio coverage and large areas to be monitored, the organization of nodes in small clusters is generally used. Moreover, a large number of WSN nodes is usually deployed in the monitoring area to increase WSN dependability. Therefore, the best cluster head positioning is a desirable characteristic in a WSN. In this paper, we propose a hybrid clustering algorithm based on community detection in complex networks and traditional K-means clustering technique: the QK-Means algorithm. Simulation results show that QK-Means detect communities and sub-communities thus lost message rate is decreased and WSN coverage is increased. © 2012 IEEE.
Resumo:
Identification and classification of overlapping nodes in networks are important topics in data mining. In this paper, a network-based (graph-based) semi-supervised learning method is proposed. It is based on competition and cooperation among walking particles in a network to uncover overlapping nodes by generating continuous-valued outputs (soft labels), corresponding to the levels of membership from the nodes to each of the communities. Moreover, the proposed method can be applied to detect overlapping data items in a data set of general form, such as a vector-based data set, once it is transformed to a network. Usually, label propagation involves risks of error amplification. In order to avoid this problem, the proposed method offers a mechanism to identify outliers among the labeled data items, and consequently prevents error propagation from such outliers. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method. © 2012 Springer-Verlag.
Resumo:
How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small (< 10), with model selection favouring less than five. Using 18 high-quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large-scale community structure. © 2013 Blackwell Publishing Ltd/CNRS.
Resumo:
Within a metacommunity, both environmental and spatial processes regulate variation in local community structure. The strength of these processes may vary depending on species traits (e.g., dispersal mode) or the characteristics of the regions studied (e.g., spatial extent, environmental heterogeneity). We studied the metacommunity structuring of three groups of stream macroinvertebrates differing in their overland dispersal mode (passive dispersers with aquatic adults; passive dispersers with terrestrial adults; active dispersers with terrestrial adults). We predicted that environmental structuring should be more important for active dispersers, because of their better ability to track environmental variability, and that spatial structuring should be more important for species with aquatic adults, because of stronger dispersal limitation. We sampled a total of 70 stream riffle sites in three drainage basins. Environmental heterogeneity was unrelated to spatial extent among our study regions, allowing us to examine the effects of these two factors on metacommunity structuring. We used partial redundancy analysis and Moran's eigenvector maps based on overland and watercourse distances to study the relative importance of environmental control and spatial structuring. We found that, compared with environmental control, spatial structuring was generally negligible, and it did not vary according to our predictions. In general, active dispersers with terrestrial adults showed stronger environmental control than the two passively dispersing groups, suggesting that the species dispersing actively are better able to track environmental variability. There were no clear differences in the results based on watercourse and overland distances. The variability in metacommunity structuring among basins was not related to the differences in the environmental heterogeneity and spatial extent. Our study emphasized that (1) environmental control is prevailing in stream metacommunities, (2) dispersal mode may have an important effect on metacommunity structuring, and (3) some factors other than spatial extent or environmental heterogeneity contributed to the differences among the basins.
Resumo:
Our understanding of how anthropogenic habitat change shapes species interactions is in its infancy. This is in large part because analytical approaches such as network theory have only recently been applied to characterize complex community dynamics. Network models are a powerful tool for quantifying how ecological interactions are affected by habitat modification because they provide metrics that quantify community structure and function. Here, we examine how large-scale habitat alteration has affected ecological interactions among mixed-species flocking birds in Amazonian rainforest. These flocks provide a model system for investigating how habitat heterogeneity influences non-trophic interactions and the subsequent social structure of forest-dependent mixed-species bird flocks. We analyse 21 flock interaction networks throughout a mosaic of primary forest, fragments of varying sizes and secondary forest (SF) at the Biological Dynamics of Forest Fragments Project in central Amazonian Brazil. Habitat type had a strong effect on network structure at the levels of both species and flock. Frequency of associations among species, as summarized by weighted degree, declined with increasing levels of forest fragmentation and SF. At the flock level, clustering coefficients and overall attendance positively correlated with mean vegetation height, indicating a strong effect of habitat structure on flock cohesion and stability. Prior research has shown that trophic interactions are often resilient to large-scale changes in habitat structure because species are ecologically redundant. By contrast, our results suggest that behavioural interactions and the structure of non-trophic networks are highly sensitive to environmental change. Thus, a more nuanced, system-by-system approach may be needed when thinking about the resiliency of ecological networks.