88 resultados para Combinatorial Veronesian
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
There is a remarkable connection between the number of quantum states of conformal theories and the sequence of dimensions of Lie algebras. In this paper, we explore this connection by computing the asymptotic expansion of the elliptic genus and the microscopic entropy of black holes associated with (supersymmetric) sigma models. The new features of these results are the appearance of correct prefactors in the state density expansion and in the coefficient of the logarithmic correction to the entropy.
Resumo:
Antimicrobial peptides (AMPs) are effector molecules of innate immune systems found in different groups of organisms, including microorganisms, plants, insects, amphibians and humans. These peptides exhibit several structural motifs but the most abundant AMPs assume an amphipathic alpha-helical structure. The alpha-helix forming antimicrobial peptides are excellent candidates for protein engineering leading to an optimization of their biological activity and target specificity. Nowadays several approaches are available and this review deals with the use of combinatorial synthesis and directed evolution in order to provide a high-throughput source of antimicrobial peptides analogues with enhanced lytic activity and specificity.
Resumo:
The present study shows how nature combined a small number of chemical building blocks to synthesize the acylpolyamine toxins in the venoms of Nephilinae orb-web spiders. Considering these structures in four parts, it was possible to rationalize a way to represent the natural combinatorial chemistry involved in the synthesis of these toxins: an aromatic moiety is connected through a linker amino acid to a polyamine chain, which in turn may be connected to an optional tail. The polyamine chains were classified into seven subtypes (from A to G) depending on the way the small chemical blocks are combined. These polyamine chains may be connected to one of the three possible chromophore moieties: 2,4-dihydroxyphenyl acetic acid, or 4-hydroxyindole acetic acid, or even with the indole acetic group. The connectivity between the aryl moiety and the polyamine chain is usually made through an asparagine residue; optionally a tail may be attached to the polyamine chain; nine different types of tails were identified among the 72 known acylpolyamine toxin structures. The combinations of three chromophores, two types of amino acid linkers, seven sub-types of polyamine backbone, and nine options of tails results in 378 different structural possibilities. However, we detected only 91 different toxin structures, which may represent the most successful structural trials in terms of efficiency of prey paralysis/death.
Resumo:
In this paper, we consider a tiling generated by a Pisot unit number of degree d >= 3 which has a finite expansible property. We compute the states of a finite automaton which recognizes the boundary of the central tile. We also prove in the case d = 3 that the interior of each tile is simply connected.
Resumo:
A metaheuristic technique for solving the short-term transmission network expansion and reactive power planning problems, at the same time, in regulated power systems using the AC model is presented. The problem is solved using a real genetic algorithm (RGA). For each topology proposed by RGA an indicator is employed to identify the weak buses for new reactive power sources allocation. The fitness function is calculated using the cost of each configuration as well as constraints deviation of an AC optimal power flow (OPF) in which the minimum reactive generation of new reactive sources and the active power losses are objectives. With allocation of reactive power sources at load buses, the circuit capacity increases and the cost of installation could be decreased. The method is tested in a well known test system, presenting good results when compared with other approaches. © 2011 IEEE.
Resumo:
This paper proposes strategies to reduce the number of variables and the combinatorial search space of the multistage transmission expansion planning problem (TEP). The concept of the binary numeral system (BNS) is used to reduce the number of binary and continuous variables related to the candidate transmission lines and network constraints that are connected with them. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) and additional constraints, obtained from power flow equilibrium in an electric power system are employed for more reduction in search space. The multistage TEP problem is modeled like a mixed binary linear programming problem and solved using a commercial solver with a low computational time. The results of one test system and two real systems are presented in order to show the efficiency of the proposed solution technique. © 1969-2012 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Assigning cells to switches in a cellular mobile network is known as an NP-hard optimization problem. This means that the alternative for the solution of this type of problem is the use of heuristic methods, because they allow the discovery of a good solution in a very satisfactory computational time. This paper proposes a Beam Search method to solve the problem of assignment cell in cellular mobile networks. Some modifications in this algorithm are also presented, which allows its parallel application. Computational results obtained from several tests confirm the effectiveness of this approach and provide good solutions for large scale problems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the minimization of tool switches problem we seek a sequence to process a set of jobs so that the number of tool switches required is minimized. In this work different variations of a heuristic based on partial ordered job sequences are implemented and evaluated. All variations adopt a depth first strategy of the enumeration tree. The computational test results indicate that good results can be obtained by a variation which keeps the best three branches at each node of the enumeration tree, and randomly choose, among all active nodes, the next node to branch when backtracking.
Resumo:
The paper presents an extended genetic algorithm for solving the optimal transmission network expansion planning problem. Two main improvements have been introduced in the genetic algorithm: (a) initial population obtained by conventional optimisation based methods; (b) mutation approach inspired in the simulated annealing technique, the proposed method is general in the sense that it does not assume any particular property of the problem being solved, such as linearity or convexity. Excellent performance is reported in the test results section of the paper for a difficult large-scale real-life problem: a substantial reduction in investment costs has been obtained with regard to previous solutions obtained via conventional optimisation methods and simulated annealing algorithms; statistical comparison procedures have been employed in benchmarking different versions of the genetic algorithm and simulated annealing methods.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A combinatorial mathematical model in tandem with a metaheuristic technique for solving transmission network expansion planning (TNEP) using an AC model associated with reactive power planning (RPP) is presented in this paper. AC-TNEP is handled through a prior DC model while additional lines as well as VAr-plants are used as reinforcements to cope with real network requirements. The solution of the reinforcement stage can be obtained by assuming all reactive demands are supplied locally to achieve a solution for AC-TNEP and by neglecting the local reactive sources, a reactive power planning (RPP) will be managed to find the minimum required reactive power sources. Binary GA as well as a real genetic algorithm (RCA) are employed as metaheuristic optimization techniques for solving this combinatorial TNEP as well as the RPP problem. High quality results related with lower investment costs through case studies on test systems show the usefulness of the proposal when working directly with the AC model in transmission network expansion planning, instead of relaxed models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)