55 resultados para Collaboration Spaces
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We study Hardy spaces on the boundary of a smooth open subset or R-n and prove that they can be defined either through the intrinsic maximal function or through Poisson integrals, yielding identical spaces. This extends to any smooth open subset of R-n results already known for the unit ball. As an application, a characterization of the weak boundary values of functions that belong to holomorphic Hardy spaces is given, which implies an F. and M. Riesz type theorem. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The play operator has a fundamental importance in the theory of hysteresis. It was studied in various settings as shown by P. Krejci and Ph. Laurencot in 2002. In that work it was considered the Young integral in the frame of Hilbert spaces. Here we study the play in the frame of the regulated functions (that is: the ones having only discontinuities of the first kind) on a general time scale T (that is: with T being a nonempty closed set of real numbers) with values in a Banach space. We will be showing that the dual space in this case will be defined as the space of operators of bounded semivariation if we consider as the bilinearity pairing the Cauchy-Stieltjes integral on time scales.
Resumo:
Purpose: To identify the trend of authorship in dental implant by exploring the prevalence of coauthored articles and to investigate the collaboration efforts, trends in funding involved in original articles, and their relationships. Materials: Articles published in the Clinical Oral Implants Research, International Journal of Oral & Maxillofacial Implants, Clinical Implant Dentistry and Related Research, Implant Dentistry, and Journal of Oral Implantology from 2005 to 2009 were reviewed. Nonoriginal articles were excluded. For each included articles, number of authors, collaboration efforts, and extramural funding were recorded. Descriptive and analytical statistics (alpha = 0.05), including logistic regression analysis and chi(2) test, were used. Results: From a total of 2085 articles, 1503 met the inclusion criteria. Publications with 5 or more authors increased over time (P = 0.813). The amount of collaboration among different disciplines, institutions, and countries all increased. The greatest increase of collaboration was seen among institutions (P = 0.09). Non-funding studies decreased over time (P = 0.031). There was a strong association between collaboration and funding for the manuscripts during the years studied (OR, 1.5). Conclusion: The number of authors per articles and collaborative studies increased over time in implant-related journals. Collaborative studies were more likely to be funded. (Implant Dent 2011;20:68-75)
Resumo:
An approach featuring s-parametrized quasiprobability distribution functions is developed for situations where a circular topology is observed. For such an approach, a suitable set of angle - angular momentum coherent states must be constructed in an appropriate fashion.
Resumo:
Following the discussion-in state-space language-presented in a preceding paper, we work on the passage from the phase-space description of a degree of freedom described by a finite number of states (without classical counterpart) to one described by an infinite (and continuously labelled) number of states. With this it is possible to relate an original Schwinger idea to the Pegg-Barnett approach to the phase problem. In phase-space language, this discussion shows that one can obtain the Weyl-Wigner formalism, for both Cartesian and angular coordinates, as limiting elements of the discrete phase-space formalism.
Resumo:
By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.
Resumo:
We show how discrete squeezed states in an N-2-dimensional phase space can be properly constructed out of the finite-dimensional context. Such discrete extensions are then applied to the framework of quantum tomography and quantum information theory with the aim of establishing an initial study on the interference effects between discrete variables in a finite phase space. Moreover, the interpretation of the squeezing effects is seen to be direct in the present approach, and has some potential applications in different branches of physics.
Resumo:
The Cahill-Glauber approach for quantum mechanics on phase space is extended to the finite-dimensional case through the use of discrete coherent states. All properties and features of the continuous formalism are appropriately generalized. The continuum results are promptly recovered as a limiting case. The Jacobi theta functions are shown to have a prominent role in the context.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A data sample corresponding to an integrated luminosity of 2.1 fb(-1) collected by the D phi detector at the Fermilab Tevatron Collider was analyzed to search for squarks and gluinos produced in p (p) over bar collisions at a center-of-mass energy of 1.96 TeV. No evidence for the production of such particles was observed in topologies involving jets and missing transverse energy, and 95% C.L. lower limits of 379 GeV and 308 GeV were set on the squark and gluino masses, respectively, within the framework of minimal supergravity with tan beta = 3, A(0) = 0, and mu < 0. The corresponding previous limits are improved by 54 GeV and 67 GeV. (c) 2008 Elsevier B.V. All rights reserved.