3 resultados para Code Construction
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
BCH codes over arbitrary finite commutative rings with identity are derived in terms of their locator vector. The derivation is based on the factorization of xs -1 over the unit ring of an appropriate extension of the finite ring. We present an efficient decoding procedure, based on the modified Berlekamp-Massey algorithm, for these codes. The code construction and the decoding procedures are very similar to the BCH codes over finite integer rings. © 1999 Elsevier B.V. All rights reserved.
Resumo:
In this work, we propose an innovative methodology to extend the construction of minimum and non-minimum delay perfect codes as a subset of cyclic division algebras over ℚ(ζ3), where the signal constellations are isomorphic to the hexagonal An 2 -rotated lattice, for any channel of any dimension n such that gcd{n, 3) = 1.
Resumo:
In this paper, we present a new construction and decoding of BCH codes over certain rings. Thus, for a nonnegative integer t, let A0 ⊂ A1 ⊂···⊂ At−1 ⊂ At be a chain of unitary commutative rings, where each Ai is constructed by the direct product of appropriate Galois rings, and its projection to the fields is K0 ⊂ K1 ⊂···⊂ Kt−1 ⊂ Kt (another chain of unitary commutative rings), where each Ki is made by the direct product of corresponding residue fields of given Galois rings. Also, A∗ i and K∗ i are the groups of units of Ai and Ki, respectively. This correspondence presents a construction technique of generator polynomials of the sequence of Bose, Chaudhuri, and Hocquenghem (BCH) codes possessing entries from A∗ i and K∗ i for each i, where 0 ≤ i ≤ t. By the construction of BCH codes, we are confined to get the best code rate and error correction capability; however, the proposed contribution offers a choice to opt a worthy BCH code concerning code rate and error correction capability. In the second phase, we extend the modified Berlekamp-Massey algorithm for the above chains of unitary commutative local rings in such a way that the error will be corrected of the sequences of codewords from the sequences of BCH codes at once. This process is not much different than the original one, but it deals a sequence of codewords from the sequence of codes over the chain of Galois rings.