55 resultados para Classification of functioning
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study analyzed the (ICHD I-1988) and ( ICHD II-2004) diagnostic criteria in children and adolescents. Our population consisted of 496 patients of the Headache Outpatient Ward for Children and Adolescents retrospectively studied from 1992 to 2002. Individuals were classified according to three diagnostic groups: Intuitive Clinical Diagnosis ( Gold Standard), ICHD I-1988 and ICHD II-2004. They were statistically compared using the variables: Sensitivity ( S), Specificity (Sp), Positive Predictive Value (PPV), Negative Predictive Value (NPV). When ICHD I-1988 was used, the sensitivity of migraine without and with aura was 21% and 27%, respectively, whereas in ICHD II-2004 it changed to 53% and 71% without affecting specificity. As a conclusion, the current classification criteria ( ICHD II-2004) showed greater sensitivity and high specificity for migraine than ICHD I-1988, although it improved migraine diagnosis in children and adolescents, the sensitivity remains poor.
Resumo:
ObjectiveTo describe onset features, classification and treatment of juvenile dermatomyositis (JDM) and juvenile polymyositis (JPM) from a multicentre registry.MethodsInclusion criteria were onset age lower than 18 years and a diagnosis of any idiopathic inflammatory myopathy (IIM) by attending physician. Bohan & Peter (1975) criteria categorisation was established by a scoring algorithm to define JDM and JPM based oil clinical protocol data.ResultsOf the 189 cases included, 178 were classified as JDM, 9 as JPM (19.8: 1) and 2 did not fit the criteria; 6.9% had features of chronic arthritis and connective tissue disease overlap. Diagnosis classification agreement occurred in 66.1%. Medial? onset age was 7 years, median follow-up duration was 3.6 years. Malignancy was described in 2 (1.1%) cases. Muscle weakness occurred in 95.8%; heliotrope rash 83.5%; Gottron plaques 83.1%; 92% had at least one abnormal muscle enzyme result. Muscle biopsy performed in 74.6% was abnormal in 91.5% and electromyogram performed in 39.2% resulted abnormal in 93.2%. Logistic regression analysis was done in 66 cases with all parameters assessed and only aldolase resulted significant, as independent variable for definite JDM (OR=5.4, 95%CI 1.2-24.4, p=0.03). Regarding treatment, 97.9% received steroids; 72% had in addition at least one: methotrexate (75.7%), hydroxychloroquine (64.7%), cyclosporine A (20.6%), IV immunoglobulin (20.6%), azathioprine (10.3%) or cyclophosphamide (9.6%). In this series 24.3% developed calcinosis and mortality rate was 4.2%.ConclusionEvaluation of predefined criteria set for a valid diagnosis indicated aldolase as the most important parameter associated with de, methotrexate combination, was the most indicated treatment.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Oropharyngeal dysphagia is characterized by any alteration in swallowing dynamics which may lead to malnutrition and aspiration pneumonia. Early diagnosis is crucial for the prognosis of patients with dysphagia, and the best method for swallowing dynamics assessment is swallowing videofluoroscopy, an exam performed with X-rays. Because it exposes patients to radiation, videofluoroscopy should not be performed frequently nor should it be prolonged. This study presents a non-invasive method for the pre-diagnosis of dysphagia based on the analysis of the swallowing acoustics, where the discrete wavelet transform plays an important role to increase sensitivity and specificity in the identification of dysphagic patients. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
lsoscalar (T = 0) plus isovector (T = 1) pairing Hamiltonian in LS-coupling. which is important for heavy N = Z nuclei, is solvable in terms of a SO(8) Lie algebra for three special values of the mixing parameter that measures the competition between the T = 0 aid T = 1 pairing. The SO(8) algebra is generated, amongst others, by the S = 1, T = 0 and S = 0, T = 1 pair creation and annihilation operators and corresponding to the three values of the mixing parameter, there are three chains of subalgebras: SO(8) superset of SOST (6) superset of SOS(3) circle times SOT(3), SO(8) superset of [SOS(5) superset of SOS(3)] circle times SOT(3) and SO(8) superset of [SOT(5) superset of SOT(3)] circle times SOS(3). Shell model Lie algebras, with only particle number conserving generators, that are complementary to these three chains of subalgebras are identified and they are used in the classification of states for a given number of nucleons. The classification problem is solved explicitly tor states with SO(8) seniority nu = 0, 1, 2, 3 and 4. Using them, hand structures in isospin space are identified for states with nu = 0, 1, 2 and 3. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A short summary of the theory of symmetric group and symmetric functions needed to follow the theory of Schur functions and plethysms is presented. One then defines plethysm, gives its properties and presents a procedure for its calculation. Finally, some aplications in atomic physics and nuclear structure are given.
Resumo:
We give a complete classification of basis with unitari (U(A-1), U(3)) and permutational (S)A)) symmetries. Thse are suitable as functions for (p-f)- nuclei (41<= A <= 80) with minimal configuration energy. We also give a brief survey of way in which are obtained.
Resumo:
This paper presents two approaches of Artificial Immune System for Pattern Recognition (CLONALG and Parallel AIRS2) to classify automatically the well drilling operation stages. The classification is carried out through the analysis of some mud-logging parameters. In order to validate the performance of AIS techniques, the results were compared with others classification methods: neural network, support vector machine and lazy learning.
Resumo:
The pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).