25 resultados para Classification accuracy
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Although non-technical losses automatic identification has been massively studied, the problem of selecting the most representative features in order to boost the identification accuracy has not attracted much attention in this context. In this paper, we focus on this problem applying a novel feature selection algorithm based on Particle Swarm Optimization and Optimum-Path Forest. The results demonstrated that this method can improve the classification accuracy of possible frauds up to 49% in some datasets composed by industrial and commercial profiles. © 2011 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this work is to discriminate vegetation classes throught remote sensing images from the satellite CBERS-2, related to winter and summer seasons in the Campos Gerais region Paraná State, Brazil. The vegetation cover of the region presents different kinds of vegetations: summer and winter cultures, reforestation areas, natural areas and pasture. Supervised classification techniques like Maximum Likelihood Classifier (MLC) and Decision Tree were evaluated, considering a set of attributes from images, composed by bands of the CCD sensor (1, 2, 3, 4), vegetation indices (CTVI, DVI, GEMI, NDVI, SR, SAVI, TVI), mixture models (soil, shadow, vegetation) and the two first main components. The evaluation of the classifications accuracy was made using the classification error matrix and the kappa coefficient. It was defined a high discriminatory level during the classes definition, in order to allow separation of different kinds of winter and summer crops. The classification accuracy by decision tree was 94.5% and the kappa coefficient was 0.9389 for the scene 157/128. For the scene 158/127, the values were 88% and 0.8667, respectively. The classification accuracy by MLC was 84.86% and the kappa coefficient was 0.8099 for the scene 157/128. For the scene 158/127, the values were 77.90% and 0.7476, respectively. The results showed a better performance of the Decision Tree classifier than MLC, especially to the classes related to cultivated crops, indicating the use of the Decision Tree classifier to the vegetation cover mapping including different kinds of crops.
Resumo:
This paper reports on a sensor array able to distinguish tastes and used to classify red wines. The array comprises sensing units made from Langmuir-Blodgett (LB) films of conducting polymers and lipids and layer-by-layer (LBL) films from chitosan deposited onto gold interdigitated electrodes. Using impedance spectroscopy as the principle of detection, we show that distinct clusters can be identified in principal component analysis (PCA) plots for six types of red wine. Distinction can be made with regard to vintage, vineyard and brands of the red wine. Furthermore, if the data are treated with artificial neural networks (ANNs), this artificial tongue can identify wine samples stored under different conditions. This is illustrated by considering 900 wine samples, obtained with 30 measurements for each of the five bottles of the six wines, which could be recognised with 100% accuracy using the algorithms Standard Backpropagation and Backpropagation momentum in the ANNs. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives:The aim of this in vitro study was to assess the inter- and intra-examiner reproducibility and the accuracy of the International Caries Detection and Assessment System-II (ICDAS-II) in detecting occlusal caries.Methods:One hundred and sixty-three molars were independently assessed twice by two experienced dentists using the 0- to 6-graded ICDAS-II. The teeth were histologically prepared and classified using two different histological systems [Ekstrand et al. (1997) Caries Research vol. 31, pp. 224-231; Lussi et al. (1999) Caries Research vol. 33, pp. 261-266] and assessed for caries extension. Sensitivity, specificity, accuracy and area under the ROC curve (A(z)) were obtained at D(2) and D(3) thresholds. Unweighted kappa coefficient was used to assess inter- and intra-examiner reproducibility.Results:For the Ekstrand et al. histological classification the sensitivity was 0.99 and 1.00, specificity 1.00 and 0.69 and accuracy 0.99 and 0.76 at D(2) and D(3), respectively. For the Lussi et al. histological classification the sensitivity was 0.91 and 0.75, specificity 0.47 and 0.62 and accuracy 0.86 and 0.68 at D(2) and D(3), respectively. The A(z) varied from 0.54 to 0.73. The inter- and intra-examiner kappa values were 0.51 and 0.58, respectively.Conclusions:ICDAS-II presented good reproducibility and accuracy in detecting occlusal caries, especially caries lesions in the outer half of the enamel.
Resumo:
Objectives: (1) To evaluate the intraobserver agreement related to image interpretation and (2) to compare the accuracy of 100%, 200% and 400% zoomed digital images in the detection of simulated periodontal bone defects.Methods: Periodontal bone defects were created in 60 pig hemi-mandibles with slow-speed burs 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm and 3.0 mm in diameter. 180 standardized digital radiographs were made using Schick sensor and evaluated at 100%, 200% and 400% zooming. The intraobserver agreement was estimated by Kappa statistic (kappa). For the evaluation of diagnostic accuracy receiver operating characteristic (ROC) analysis was performed followed by chi-square test to compare the areas under ROC curves according to each level of zooming.Results: For 100%, 200% and 400% zooming the intraobserver agreement was moderate (kappa = 0.48, kappa = 0.54 and kappa = 0.43, respectively) and there were similar performances in the discrimination capacity, with ROC areas of 0.8611 (95% CI: 0.7660-0.9562), 0.8600 (95% CI: 0.7659-0.9540), and 0.8368 (95% CI: 0.7346-0.9390), respectively, with no statistical significant differences (chi(2)-test; P = 0.8440).Conclusions: A moderate intraobserver agreement was observed in the classification of periodontal bone defects and the 100%, 200% and 400% zoomed digital images presented similar performances in the detection of periodontal bone defects.