49 resultados para Clasificación automática
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper proposes a methodology for automatic extraction of building roof contours from a Digital Elevation Model (DEM), which is generated through the regularization of an available laser point cloud. The methodology is based on two steps. First, in order to detect high objects (buildings, trees etc.), the DEM is segmented through a recursive splitting technique and a Bayesian merging technique. The recursive splitting technique uses the quadtree structure for subdividing the DEM into homogeneous regions. In order to minimize the fragmentation, which is commonly observed in the results of the recursive splitting segmentation, a region merging technique based on the Bayesian framework is applied to the previously segmented data. The high object polygons are extracted by using vectorization and polygonization techniques. Second, the building roof contours are identified among all high objects extracted previously. Taking into account some roof properties and some feature measurements (e. g., area, rectangularity, and angles between principal axes of the roofs), an energy function was developed based on the Markov Random Field (MRF) model. The solution of this function is a polygon set corresponding to building roof contours and is found by using a minimization technique, like the Simulated Annealing (SA) algorithm. Experiments carried out with laser scanning DEM's showed that the methodology works properly, as it delivered roof contours with approximately 90% shape accuracy and no false positive was verified.
Resumo:
This paper proposes a monoscopic method for automatic determination of building's heights in digital photographs areas, based on radial displacement of points in the plan image and geometry at the time the photo is obtained. Determination of the buildings' heights can be used to model the surface in urban areas, urban planning and management, among others. The proposed methodology employs a set of steps to detect arranged radially from the system of photogrammetric coordinates, which characterizes the lateral edges of buildings present in the photo. In a first stage is performed the reduction of the searching area through detection of shadows projected by buildings, generating sub-images of the areas around each of the detected shadow. Then, for each sub-image, the edges are automatically extracted, and tests of consistency are applied for it in order to be characterized as segments of straight arranged radially. Next, with the lateral edges selected and the knowledge of the flight height, the buildings' heights can be calculated. The experimental results obtained with real images showed that the proposed approach is suitable to perform the automatic identification of the buildings height in digital images.
Resumo:
This article proposes a method for 3D road extraction from a stereopair of aerial images. The dynamic programming (DP) algorithm is used to carry out the optimization process in the object-space, instead of usually doing it in the image-space such as the DP traditional methodologies. This means that road centerlines are directly traced in the object-space, implying that a mathematical relationship is necessary to connect road points in object and image-space. This allows the integration of radiometric information from images into the associate mathematical road model. As the approach depends on an initial approximation of each road, it is necessary a few seed points to coarsely describe the road. Usually, the proposed method allows good results to be obtained, but large anomalies along the road can disturb its performance. Therefore, the method can be used for practical application, although it is expected some kind of local manual edition of the extracted road centerline.
Resumo:
In this paper is a totally automatic strategy proposed to reduce the complexity of patterns ( vegetation, building, soils etc.) that interact with the object 'road' in color images, thus reducing the difficulty of the automatic extraction of this object. The proposed methodology consists of three sequential steps. In the first step the punctual operator is applied for artificiality index computation known as NandA ( Natural and Artificial). The result is an image whose the intensity attribute is the NandA response. The second step consists in automatically thresholding the image obtained in the previous step, resulting in a binary image. This image usually allows the separation between artificial and natural objects. The third step consists in applying a preexisting road seed extraction methodology to the previous generated binary image. Several experiments carried out with real images made the verification of the potential of the proposed methodology possible. The comparison of the obtained result to others obtained by a similar methodology for road seed extraction from gray level images, showed that the main benefit was the drastic reduction of the computational effort.
Resumo:
The terminological performance of the descriptors representing the Information Science domain in the SIBI/USP Controlled Vocabulary was evaluated in manual, automatic and semi-automatic indexing processes. It can be concluded that, in order to have a better performance (i.e., to adequately represent the content of the corpus), current Information Science descriptors of the SIBi/USP Controlled Vocabulary must be extended and put into context by means of terminological definitions so that information needs of users are fulfilled.
Resumo:
One of the main problems in Computer Vision and Close Range Digital Photogrammetry is 3D reconstruction. 3D reconstruction with structured light is one of the existing techniques and which still has several problems, one of them the identification or classification of the projected targets. Approaching this problem is the goal of this paper. An area based method called template matching was used for target classification. This method performs detection of area similarity by correlation, which measures the similarity between the reference and search windows, using a suitable correlation function. In this paper the modified cross covariance function was used, which presented the best results. A strategy was developed for adaptative resampling of the patterns, which solved the problem of deformation of the targets due to object surface inclination. Experiments with simulated and real data were performed in order to assess the efficiency of the proposed methodology for target detection. The results showed that the proposed classification strategy works properly, identifying 98% of targets in plane surfaces and 93% in oblique surfaces.
Resumo:
The purpose of this paper is to introduce a methodology for semi-automatic road extraction from aerial digital image pairs by using dynamic programming and epipolar geometry. The method uses both images from where each road feature pair is extracted. The operator identifies the corresponding road featuresand s/he selects sparse seed points along them. After all road pairs have been extracted, epipolar geometry is applied to determine the automatic point-to-point correspondence between each correspondent feature. Finally, each correspondent road pair is georeferenced by photogrammetric intersection. Experiments were made with rural aerial images. The results led to the conclusion that the methodology is robust and efficient, even in the presence of shadows of trees and buildings or other irregularities.
Resumo:
In this paper is proposed a methodology for semiautomatic CBERS image orientation using roads as ground control. It is based on an iterative strategy involving three steps. In the first step, an operator identifies on the image the ground control roads and supplies along them a few seed points, which could be sparsely and coarsely distributed. These seed points are used by the dynamic programming algorithm for extracting the ground control roads from the image. In the second step, it is established the correspondences between points describing the ground control roads and the corresponding ones extracted from the image. In the last step, the corresponding points are used to orient the CBERS image by using the DLT (Direct Linear Transformation). The two last steps are iterated until the convergence of the orientation process is verified. Experimental results showed that the proposed methodology was efficient with several test images. In all cases the orientation process converged. Moreover, the estimated orientation parameters allowed the registration of check roads with pixel accuracy or better.
Resumo:
The object of this work was to make a morphometric characterization of the Bobo river watershed in the Nariño department in Colombia. A map was created from topographical maps (1:25.000 scale) using the drainage network and the limit of each 2nd order microbasin as database. Dimensional, drainage network and relief morphometric parameters were evaluated for a later hy-drological study. The drainage area was 224.97 km2, having a 71.31 km perimeter. The Bobo river watershed is considered to be 6th order and has 176 2nd order drainage channels, 34 3rd order drainage channels, 9 4th order drainage channels and 3 5th order drainage channels. Average drainage density is 3.71km/km2, reflecting its high density, having strong, dissected geological formation. The area has a typical Andean land-use pattern, having native wooded vegetation, traditional transitory potato and vegetable growing predominating.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)