7 resultados para Chromosome dynamics
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In higher eukaryotes, the 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units composed of a coding region and a non-transcribed spacer sequence (NTS). These tandem arrays can be found on either one or more chromosome pairs. 5S rDNA copies from the tilapia fish. Oreochromis niloticus, were cloned and the nucleotide sequences of the coding region and of the non-transcribed spacer were deter-mined. Moreover, the genomic organization of the 5S rDNA tandem repeats was investigated by fluorescence in situ hybridization (FISH) and Southern blot hybridization. Two 5S rDNA classes, one consisting of 1.4-kb repeats and another one with 0.5-kb repeats were identified and designated 5S rDNA type I and type II, respectively, An inverted 5S rRNA gene and a 5S rRNA putative pseudogene were also identified inside the tandem repeats of 5S rDNA type I. FISH permitted the visualization of the 5S rRNA genes at three chromosome loci, one of them consisting of arrays of the 5S rDNA type I, and the two others corresponding to arrays of the 5S rDNA type II. The two classes of the 5S rDNA. The presence of pseudogenes, and the inverted genes observed in the O. niloticus genome might be a consequence of the intense dynamics of the evolution of these tandem repeat elements. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We analyze the chromosomal location of 5S rDNA clusters in 29 species of grasshoppers belonging to the family Acrididae. There was extensive variation among species for the number and location of 5S rDNA sites. Out of 148 sites detected, 75% were proximally located, 21.6% were interstitial, and only 3.4% were distal. The number of 5S rDNA sites per species varied from a single chromosome pair (in six species) to all chromosome pairs (in five species), with a range of intermediate situations. Thirteen chromosomes from eight species carried two 5S rDNA clusters. At intraspecific level, differences among populations were detected in Eyprepocnemis plorans, and some heteromorphisms have also been observed in some species. Double FISH for 5S rDNA and H3 histone gene DNA, performed on 17 of these 29 species, revealed that both markers are sometimes placed in a same chromosome but at different location, whereas they appeared to co-localize in five species (Calliptamus barbarus, Heteracris adpersa, Aiolopus strepens, Oedipoda charpentieri and O. coerulescens). Double fiber-FISH in A. strepens and O. coerulescens showed that the two DNAs are closely interspersed with variable relative amounts of both classes of DNA. Finally, no correlation was observed between the number of 5S and 45S rDNA clusters in 23 species where this information was available. These results are discussed in the light of possible mechanisms of spread that led to the extensive variation in the number of clusters observed for both rDNA types in acridid grasshoppers. © 2011 Springer Science+Business Media B.V.
Resumo:
There is species divergence in control of DNA methylation during preimplantation development. The exact pattern of methylation in the bovine embryo has not been established nor has its regulation by gender or maternal signals that regulate development such as colony stimulating factor 2 (CSF2). Using immunofluorescent labeling with anti-5-methylcytosine and embryos produced with X-chromosome sorted sperm, it was demonstrated that methylation decreased from the 2-cell stage to the 6-8 cell stage and then increased thereafter up to the blastocyst stage. In a second experiment, embryos of specific genders were produced by fertilization with X- or Y-sorted sperm. The developmental pattern was similar to the first experiment, but there was stage × gender interaction. Methylation was greater for females at the 8-cell stage but greater for males at the blastocyst stage. Treatment with CSF2 had no effect on labeling for DNA methylation in blastocysts. Methylation was lower for inner cell mass cells (i.e., cells that did not label with anti-CDX2) than for trophectoderm (CDX2-positive). The possible role for DNMT3B in developmental changes in methylation was evaluated by determining gene expression and degree of methylation. Steady-state mRNA for DNMT3B decreased from the 2-cell stage to a nadir for D 5 embryos >16 cells and then increased at the blastocyst stage. High resolution melting analysis was used to assess methylation of a CpG rich region in an intronic region of DNMT3B. Methylation percent decreased between the 6-8 cell and the blastocyst stage but there was no difference in methylation between ICM and TE. Results indicate that DNA methylation undergoes dynamic changes during the preimplantation period in a manner that is dependent upon gender and cell lineage. Developmental changes in expression of DNMT3B are indicative of a possible role in changes in methylation. Moreover, DNMT3B itself appears to be under epigenetic control by methylation. © 2013 Dobbs et al.
Resumo:
Background: Transposable elements (TEs) have the potential to produce broad changes in the genomes of their hosts, acting as a type of evolutionary toolbox and generating a collection of new regulatory and coding sequences. Several TE classes have been studied in Neotropical cichlids; however, the information gained from these studies is restricted to the physical chromosome mapping, whereas the genetic diversity of the TEs remains unknown. Therefore, the genomic organization of the non-LTR retrotransposons Rex1, Rex3, and Rex6 in five Amazonian cichlid species was evaluated using physical chromosome mapping and DNA sequencing to provide information about the role of TEs in the evolution of cichlid genomes. Results: Physical mapping revealed abundant TE clusters dispersed throughout the chromosomes. Furthermore, several species showed conspicuous clusters accumulation in the centromeric and terminal portions of the chromosomes. These TE chromosomal sites are associated with both heterochromatic and euchromatic regions. A higher number of Rex1 clusters were observed among the derived species. The Rex1 and Rex3 nucleotide sequences were more conserved in the basal species than in the derived species; however, this pattern was not observed in Rex6. In addition, it was possible to observe conserved blocks corresponding to the reverse transcriptase fragment of the Rex1 and Rex3 clones and to the endonuclease of Rex6. Conclusion: Our data showed no congruence between the Bayesian trees generated for Rex1, Rex3 and Rex6 of cichlid species and phylogenetic hypothesis described for the group. Rex1 and Rex3 nucleotide sequences were more conserved in the basal species whereas Rex6 exhibited high substitution rates in both basal and derived species. The distribution of Rex elements in cichlid genomes suggests that such elements are under the action of evolutionary mechanisms that lead to their accumulation in particular chromosome regions, mostly in heterochromatins. © 2013 Schneider et al.; licensee BioMed Central Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)