10 resultados para Chemical relaxation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We model the heterogeneously catalyzed oxidation of CO over a Pt surface. A phase diagram analysis is used to probe the several steady state regimes and their stability. We incorporate an experimentally observed 'slow' sub-oxide kinetic step, thereby generalizing a previously presented model. In agreement with experimental data, stable, oscillatory and quasi-chaotic regimes are obtained. Furthermore, the inclusion of the sub-oxide step yields a relaxation oscillation regime. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The incorporation of conducting polymer into a conventional polymer matrix has received attention because of the possibility of combining the good processability and mechanical performance of the conventional polymer with the electrical and optical properties of conducting polymer. In this work, flexible films of polyurethane (PU) and Poli(o-metoxyaniline)(POMA) blends were obtained by casting and investigated using thermally stimulated depolarisation current (TSDC) measurements. Two relaxation peaks were found in the range of-20°C to 90°C. The first one at T=24°C was attributed as α relaxation associated to the glass transition of PU/POMA blend and the second one located at T=60°C can be attributed to space charge.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The anelastic relaxation (elastic energy loss and Young modulus) of nearly stoichiometric La2CuO4+delta with LTO structure was measured. Extraordinarily intense effects are present below room temperature in the elastic dynamic susceptibility, indicating relaxational dynamics of a relevant fraction of the lattice. The involved degrees of freedom are identified as rotations of the CuO6 octahedra. Two distinct processes are found at frequencies around 1 kKz: one is observed around 150 K and is characterized by a mean activation energy of 2800 K; the second one occurs below 30 K and is governed by atomic tunnelling. Two explanations are proposed for the faster process: i) formation of fluctuating LTT domains on a scale of few atomic cells; ii) the LTO phase is a dynamical Jahn-Teller phase with all the octahedra tunneling between two LTT-like tilts. In both cases there would be important implications regarding the mechanisms giving rise to charge nanophase separation and strong electron-phonon coupling.
Resumo:
A side-chain methacrylate copolymer functionalized with the nonlinear optical chromophore 4-[N-ethyl-N-(2-hydroxyethyl)]amino-2'-chloro-4'-nitroazobenzene, disperse red-13, was prepared and characterized. The chromophore relaxation was investigated measuring the decay of the electrooptic coefficient r(13) and the complex dielectric constant at different temperatures. Results obtained below and above T-g were analyzed using the Kohlrausch-Williams-Watts(KWW) equation, through the study of the temperature dependence of the KWW parameters. Above T-g the relaxation time experimental data were fitted to the Williams-Landel-Ferry (WLF) equation and its parameters determined. Chromophore relaxation leading to the decrease of electrooptic properties was found associated with a primary alpha relaxation. The obtained WLF equation parameters were introduced into the Adam-Gibbs-Tool-Narayanaswamy-Moynihan equation, and the overall relaxation time temperature dependence was successfully obtained in terms of the fictive temperature, accounting for the sample thermal treatment and allowing optimized thermal treatment to be found. The copolymer KWW stretching parameter at the glass transition temperature lies close to the limit value for short-range interactions, i.e., 0.6, suggesting that the chromophore group is participating in primary a relaxation.
Resumo:
In the last 50 years several studies have been made to understand the relaxation mechanisms of the heavy interstitial atoms present in transition metals and their alloys. Internal friction measurements have been carried out in a Nb-Ti alloy containing 3.1 at.% of Ti produced by the Materials Department of Chemical Engineering Faculty of Lorena (Brazil), with several quantities of oxygen in solid solution using a torsion pendulum. These measurements have been performed by a torsion pendulum in the temperature range from 300 to 700 K with an oscillation frequency between 0.5 and 10 Hz. The experimental results show complex internal friction spectra that have been resolved, into a series of Debye peaks corresponding to different interactions. For each relaxation process it was possible to obtain the height and temperature of the peak, the activation energy and the relaxation time of the process. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)