118 resultados para Chemical process
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
SrTiO3 thin films were prepared by the polymeric precursor method and deposited by spin-coating onto Pt/Ti/SiO2/Si(100) substrates. The spin-coated films heat treated at 700 degrees C were crack-free, dense, and homogeneous. Microstructural and morphological evaluations were followed by grazing incident X-ray, scanning electron microscopy and atomic force microscopy. Dielectric studies indicated a dielectric constant of about 475, which is higher than that of ceramic SrTiO3, and a factor dissipation of about 0.050 at 100 kHz. SrTiO3 thin films were found to have paraelectric properties with C-V characteristics. (C) 2000 Kluwer Academic Publishers.
Resumo:
Glass ionomer cements (GICs) are glass and polymer composite materials. These materials currently find use in the dental field. The purpose of this work is to obtain systems based on composition 4.5SiO(2)-3Al(2)O(3)-XNb2O5-2CaO to be used in Dentistry. The systems were prepared by chemical route at 700 degrees C. The results obtained by XRD and DTA showed that all systems prepared are glasses. The structures of the obtained glasses were compared to commercial material using Al-27 and Si-29 MAS NMR. The analysis of MAS NMR spectra indicated that the systems developed and commercial material are formed by SiO4 and AlO4 linked tetrahedra. The properties of glass ionomer cements based on the glasses prepared with several niobium contents were studied. Setting and working times of the cement pastes, microhardness and diametral tensile strength were evaluated for the experimental GICs and commercial luting cements. It was concluded that setting time of the cement pastes increased with increasing niobium content of the glasses (X). The properties to the GICs such as setting time and microhardness were influenced by niobium content. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: Considering the potential of the association between laser ablation and smaller scale hydroxyapatite (HA) coatings to create a stable and bioactive surface on titanium dental implants, the aim of the present study was to determine, by the removal torque test, the effects of a surface treatment created by laser-ablation (Nd:YAG) and, later, thin deposition of HA particles by a chemical process, compared to implants with only laser-ablation and implants with machined surfaces.Materials and Methods: Forty-eight rabbits received I implant by tibia of the following surfaces: machined surface (MS), laser-modified surface (LMS), and biomimetic hydroxiapatite coated surface (HA). After 4, 8, and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition, and roughness.Results: Average removal torque in each period was 23.28, 24.0, and 33.85 Ncm to MS, 33.0, 39.87, and 54.57 Ncm to LMS, and 55.42, 63.71 and 64.0 Ncm to HA. The difference was statistically significant (P < .05) between the LMS-MS and HA-MS surfaces in all periods of evaluation, and between LMS-HA to 4 and 8 weeks of healing. The surface characterization showed a deep, rough, and regular topography provided by the laser conditioning, that was followed by the HA coating.Conclusions: Based on these results, it was possible to conclude that the implants with laser surface modification associated with HA biomimetic coating can shorten the implant healing period by the increase of bone implant interaction during the first 2 months after implant placement. (C) 2009 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 67:1706-1715, 2009
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives. The purpose of this paper is to modify the conventional calcium fluoro-aluminosilicate glass, which is used in the formation of glass ionomer cements (CIGs) by the niobium addition and to study the properties of GICs obtained.Materials and methods. Sol-gel process was used to prepare the powder at lower temperature than fusion method. Glass-ceramic powder obtained in this way was used to prepare the GICs. The properties such as working and setting times, microhardness and diametral tensile strength were evaluated for the experimental GICs and a commercial luting cement.Results. The ideal powder:liquid (P:L) ratio determined to prepare the experimental GICs was equal to 1:1. The cements prepared using this ratio showed working and setting times similar to the commercial GICs. in mechanical tests it was observed that microhardness and diametral tensile strength of the experimental GICs decreased significantly with the reduction of P:L ratio. on the other hand, the results obtained in microhardness tests indicated that the presence of niobium was a positive factor.Significance. The chemical process allows the development of glass-ceramic powder at 600 degrees C which is the goal of the present paper. It was concluded that GICs containing niobium might be used in dental applications and these results encourage further researches on other compositions. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper 4.5SiO(2)-3Al(2)O(3-x)Nb(2)O(5)-2CaO powders have been synthesized using a chemical process the Polymeric Precursor Method. The process of glass formation has been investigated by XRD and DTA, the results confirm that the prepared powders are glasses. Experimental data show that amount of Nb2O5 had a considerable effect on the T-g values. The structures of glasses prepared. have been determined by Si-29 and Al-27 MAS NMR and the results indicated that the network is formed by SiO4 and AlO4 tetrahedral linked and probably Si-O-Nb bonds are present in the vitreous network. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report on several amorphous compounds based on different metal oxianions with intense photoluminescence at room temperature. These compounds were synthesised by a soft chemical process and deposited on Si (100) by a spin-coating technique. To select these different metal oxianions, a classic concept based on a metal oxide network former is used. We describe a minimum set of requirements to obtain an amorphous metal oxide with photoluminescence emission at room temperature.
Resumo:
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. on the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV. (C) 2003 American Institute of Physics.
Resumo:
The effect of the properties of starting boron powders on the superconducting properties of MgB2 has been studied. The 92% and 96% pure powders produce lower surface reactivity and larger particle size than the 99% boron powder, as can be seen from Brunauer - Emmett - Teller (BET) and scanning electron microscopy (SEM) results, indicating that the low purity powders cannot be used to archive the same superconducting properties as those of samples made from pure 99% boron powder. However, the purity of 92% and 96% boron powders can be improved by using a simple chemical process, leading to enhanced magnetic critical current densities J(c). From x-ray diffraction (XRD) measurement, oxide impurity has been observed, which might be originated from the B2O3 phase in the boron powders. In order to get high performance MgB2, it is obviously important to control the phase composition and microstructure of amorphous boron starting powders and solid reaction conditions.
Resumo:
Amorphous thin films, based on different network formers, were processed by a soft chemical process called the polymeric precursor method. The resultant amorphous metal oxides, displayed intense photoluminescence (PL) at room temperature. Heat treatment increases the PL intensity of these materials. Theoretical ab initio calculations are correlated with the observed experimental trends. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Strontium-modified lead titanate (PST) thin films with composition Pb1-xSrxTiO3 (0.10 < x &LE; 0.60) were grown on Pt/Ti/SiO2/Si substrates using a soft chemical process. The crystallization of the PST thin films was achieved by heat treatment at 600&DEG;C. The structural and microstructural modifications in the films were studied using X-ray diffraction (XRD) and atomic force microscopy, respectively. The XRD study shows that the lattice parameters of polycrystalline PST thin films calculated from X-ray data indicate a decrease in lattice tetragonality with the increase in strontium content in these films. This indicates a gradual change from tetragonal to cubic structure. By atomic force microscopy analysis, the average grain size of the thin films was systematically reduced with the increase in Sr content. The dielectric property of the thin films was found to be strongly dependent on the Sr concentration. With 60 at.% Sr content, a ferroelectric to paraelectric phase transition was observed at room temperature.
Resumo:
Organic-inorganic hybrids containing methacrylic acid (McOH, CH(2)= C(CH(3))COOH)) modified zirconium tetrapropoxide, Zr(OPr(n))(4), classed as di-ureasil-zirconium oxo-cluster hybrids, have been prepared and structurally characterized by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), Fourier transform infrared (FT-IR) and Raman (FT-Raman) spectroscopies, Si and C nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). XRD and SAXS results have pointed out the presence of Si- and Zr-based nanobuilding blocks (NBBs) dispersed into the organic phase. Inter-NBBs correlation distances have been estimated for the pure di-ureasil and a model compound obtained. by hydrolysis/condensation of Zr(OPr(n))(4):McOH (molar ratio 1: 1): d(Si) approximate to 26 +/- 1 angstrom and d(Zr) approximate to 16 +/- 1 angstrom, respectively. In the case of the di-ureasil-zirconium oxo-cluster hybrids, these distances depend on the Zr relative molar percentage (rel. mol. Zr %) (d(Si) ranges from 18 to 25 angstrom and d(Zr) from 14 to 23 angstrom, as the rel. mol. Zr % increases from 5 to 75), suggesting that the Si- and Zr-based clusters are interconstrained. Complementary data from FT-IR, FT-Raman, (29)Si and (13)C NMR, and AFM support to a structural model where McOH-modified Zr-based NBBs (Zr-OMc) are present over the whole range of composition. At low Zr-OMc contents (rel. mol. Zr % <30) the clusters are well-dispersed within the di-ureasil host, whereas segregation occurs at the 0.1 mu m scale at high Zr-OMc concentration (rel. mol. Zr % = 50). No Zr-O-Si heterocondensation has been discerned. Monomode waveguides, diffractions gratings, and Fabry-Perot cavities have been written through the exposure of the hybrid monoliths to UV light. FT-Raman has shown that the chemical process that takes place under illumination is the polymerization of the methacrylate groups of the Zr-OMc NBBs. The guidance region in patterned channels is a Gaussian section located below the exposed surface with typical dimensions of 320 mu m wide and 88 mu m deep. The effective refractive index is 1.5162 (maximum index contrast on the order of 1 x 10(-4)) and the reflection coeficient of the Fabry-Perot cavity (formed by a grating patterned into a 0.278 cm channel) is 0.042 with a free spectral range value of 35.6 GHz.