34 resultados para Characidium gomesi
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Different cytogenetic techniques were used to analyze the chromosomes of Characidium gomesi with the main objective of comparing the base composition of ZZ/ZW sex-chromosomes, B-chromosomes and the heterochromatin of A-chromosomes. The results of digestion of chromosomes with AluI restriction endonuclease (RE), silver and CMA3 staining, C-banding and fluorescence in situ hybridization (FISH) with the 18S rDNA probe suggested the existence of compositional differences between the heterochromatin of ZZ/ZW sex-chromosomes, A- and B-chromosomes, and indicated the presence of different numbers and morphology of B-chromosomes in the samples of this population.
Resumo:
Cytogenetic studies were performed on two sympatric species of Characidium, C. gomesi and C. cf. zebra, from the Grande River basin, Minas Gerais State, Brazil. Although both species had a chromosome number of 50 with a karyotype exclusively consisting of meta- and submetacentric chromosomes, interspecific diversity was detected concerning the size of the two first chromosome pairs of the karyotypes. Active nucleolus organizer regions (NORs) were located at the terminal position on the long arm of the 17th pair of C. gomesi and at subterminal position on the long arm of the 23rd pair of C. cf. zebra. For both species the fluorochrome CMA3 stained only the NOR-bearing pair of chromosomes. The heterochromatin pattern also showed some differentiation between these species restricted to the centromeric or pericentromeric region of C. cf. zebra and practically absent in C. gomesi. These data are discussed concerning chromosome diversification in this fish group.
Resumo:
Some species of the genus Characidium have heteromorphic ZZ/ZW sex chromosomes with a totally heterochromatic W chromosome. Methods for chromosome microdissection associated with chromosome painting have become important tools for cytogenetic studies in Neotropical fish. In Characidium cf. fasciatum, the Z chromosome contains a pericentromeric heterochromatin block, whereas the W chromosome is completely heterochromatic. Therefore, a probe was produced from the W chromosome through microdissection and degenerate oligonucleotide-primed polymerase chain reaction amplification. FISH was performed using the W probe on the chromosomes of specimens of this species. This revealed expressive marks in the pericentromeric region of the Z chromosome as well as a completely painted W chromosome. When applying the same probe on chromosome preparations of C. cf. gomesi and Characidium sp., a pattern similar to C. cf. fasciatum was found, while C. cf. zebra, C. cf. lagosantense and Crenuchus spilurus species showed no hybridization signals. Structural changes in the chromosomes of an ancestral sexual system in the group that includes the species C. cf. gomesi, C. cf. fasciatum and Characidium sp., could have contributed to the process of speciation and could represent a causal mechanism of chromosomal diversification in this group. The heterochromatinization process possibly began in homomorphic and homologous chromosomes of an ancestral form, and this process could have given rise to the current patterns found in the species with sex chromosome heteromorphism. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBB
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBB
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Individuals of two populations of the fish Characidium cf. fasciatum were cytogenetically studied and showed a basic diploid number of 50 chromosomes. Some fishes were found to have 51 to 54 chromosomes due to the presence of one to four small subtelocentric/acrocentric supernumerary chromosomes. When analyzed by conventional Giemsa staining, male and female specimens of C. cf. fasciatum from the Quinta stream and Pardo River presented the same basic karyotypic macro- and microstructure, consisting of 32 metacentric and 18 submetacentric chromosomes.Ag-NORs were terminally located on the long arms of two submetacentric chromosome pairs. Constitutive heterochromatin was identified by C-banding as small pericentromeric blocks in the majority of the chromosomes, and B-chromosomes were found to be heterochromatic. The occurrence of one totally heterochromatic submetacentric chromosome restricted to females and considered as an unusual feature in fish karyotypes led to the identification of a ZZ/ZW sex-chromosome system. The implications of chromosomic differentiation observed in the genus Characidium are discussed.
Resumo:
Basic and molecular cytogenetic analyses were performed in specimens of Characidium cf. zebra from five collection sites located throughout the Tietê, Paranapanema and Paraguay river basins. The diploid number in specimens from all samples was 2n = 50 with a karyotype composed of 32 metacentric and 18 submetacentric chromosomes in both males and females. Constitutive heterochromatin was present at the centromeric regions of all chromosomes and pair 23, had additional interstitial heterochromatic blocks on its long arms. The nucleolar organizer regions (NORs) were located on the long arms of pair 23, while the 5S rDNA sites were detected in different chromosomes among the studied samples. One specimen from the Alambari river was a natural triploid and had two extra chromosomes, resulting in 2n = 77. The remarkable karyotypic similarity among the specimens of C. cf. zebra suggests a close evolutionary relationship. on the other hand, the distinct patterns of 5S rDNA distribution may be the result of gene flow constraints during their evolutionary history.