280 resultados para Ceramic compositions

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reports on the structural characterization of Pb 1-xLaxZr0.40Ti0.60O3 (PLZT) ferroelectric ceramic compositions prepared by the conventional solid state reaction method. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to probe the local structure of PLZT samples that exhibits a normal and relaxor ferroelectric behavior. From the Zr K-edge and Pb LIII-edge EXAFS spectra, a considerable dissymmetry of Zr and Pb sites was observed in all samples, including those showing a long-range order cubic symmetry and a relaxor behavior. The Raman spectroscopy results confirmed the existence of a local disorder in all PLZT samples through the observation of Raman active vibrational modes. The variation in the intensity of the E(TO 3) mode in the PLZT relaxor samples indicates that the process of correlation between nanodomains stabilizes at temperatures lower than T m. © 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dielectric properties of the 0.65[Pb(Mg 1/3Nb 2/3)O 3]-0.35PbTiO 3 ferroelectric ceramic composition were investigated viewing the capability to be used for tunable microwave applications. The dielectric response has been studied for three selected temperatures (300 K, 370 K and 400 K), below the paraelectric- ferroelectric phase transition temperature, as a function of the applied 'bias' electric field. The obtained dielectric tunability was found to be around 60 %, under an electric field of 19 kV/cm, which makes the studied ceramic composition an excellent candidate for application in the electro-electronic industry, as tunable devices. © 2010 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent discovery of a ferroelectric monoclinic phase in the PbZr1-xTixO3 (PZT) system attained the attention of several researchers due to the possibility of understanding the relationships between structural features and piezoelectric properties. The nature of the monoclinic phase in some PZT compositions remains controversial and unclear. In this work, structural phase transitions of PbZr0.52Ti0.48O3 ceramic were investigated by infrared spectroscopy as a function of temperature. Studies were centered on nu(1)-stretching modes and corresponding half width Wi as a function of temperature. The occurrence of the anomalies in the infrared spectra as a function of temperature suggests the following monoclinic ( LT) -> monoclinic ( HT) -> tetragonal phase transition were observed at 183 K and at 263 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statement of problem. Different combinations of Co-Cr alloys bonded to ceramic have been used in dentistry; however, the bond strength of ceramic to metal can vary because of different compositions of these alloys.Purpose. The purpose of this study was to evaluate the shear bond strength of a dental ceramic to 5 commercially available Co-Cr alloys.Material and methods. Five Co-Cr alloys (IPS d.SIGN 20, IPS d.SIGN 30, Remanium 2000, Heranium P, and Wirobond C) were tested and compared to a control group of an Au-Pd alloy (Olympia). Specimen disks, 5 mm high and 4 mm in diameter, were fabricated with the lost-wax technique. Sixty specimens were prepared using opaque and dentin ceramics (VITA Omega 900), veneered, 4 mm high and 4 mm in diameter, over the metal specimens (n = 10). The shear bond strength test was performed in a universal testing machine with a crosshead speed of 0.5 mm/min. After shear bond testing, fracture surfaces were evaluated in a stereomicroscope under x25 magnification. Ultimate shear bond strength (MPa) data were analyzed with 1-way ANOVA and the Tukey HSD test (alpha = .05).Results. The mean (SID) bond strengths (MPa) were: 61.4 (7.8) for Olympia; 94.0 (18.9) for IPS 20; 96.8 (10.2) for I PS 30; 75.1 (12.4) for Remanium; 71.2 (14.3) for Heranium P; and 63.2 (10.9) for Wirobond C. Mean bond strengths for IPS 20 and IPS 30 were not significantly different, but were significantly (P<.001) higher than mean bond strengths for the other 4 alloys, which were not significantly different from each other.Conclusions. Bond strength of a dental ceramic to a Co-Cr alloy is dependent on the alloy composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced ceramic materials constitute a mature technology with a very broad base of current and potential applications and a growing list of material compositions. Within the advanced ceramics category, silicon nitride based ceramics are wear-resistant, corrosion-resistant and lightweight materials, and are superior to many materials with regard to stability in high-temperature environments. Because of this combination the silicon nitride ceramics have an especially high potential to resolve a wide number of machining problems in the industries. Presently the Si3N4 ceramic cutting tool inserts are developed using additives powders that are pressed and sintered in the form of a cutting tool insert at a temperature of 1850 °C using pressureless sintering. The microstructure of the material was observed and analyzed using XRD, SEM, and the mechanical response of this array microstructure was characterized for hardness Vickers and fracture toughness. The results show that Si3N4/20 wt.% (AlN and Y 2O3) gives the best balance between hardness Vickers and fracture toughness. The Si3N4/15 wt.% (AlN and Y 2O3) composition allows the production of a very fine-grained microstructure with low decreasing of the fracture toughness and increased hardness Vickers. These ceramic cutting tools present adequate characteristics for future application on dry machining. © (2010) Trans Tech Publications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO 2, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol. © 2011 Ceramic Society of Japan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mo-doped TiO2 powders were prepared using a dry mixture of TiO2 and MoO3 oxides with several compositions, followed by a calcination step at several temperatures. The resulting oxide system develops yellow and green tones. The XRD patterns showed only traces of MoO 3; however, EDS results, combined with TG/DTA data, confirmed the presence of molybdenum ions, suggesting that the changes in optical properties of the oxide system is due to the incorporation of Mo ions into the TiO 2 matrix, substituting Ti+4 with Mo+6 ions. The band gap decreased with increasing of MoO3 content; on the other hand, the band gap reached a maximum value at about 850°C to 910°C when plotted as a function of the calcination temperature. The glazes produced showed that the oxide system under study is a potential material for use as abinary ceramic pigment. Copyright © 2013 Taylor & Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the physicochemical characteristics of calcium phosphate based bioactive ceramics of different compositions and blends presenting similar micro/nanoporosity and micrometer scale surface texture were characterized and evaluated in an in vivo model. Prior to the animal experiment, the porosity, surface area, particle size distribution, phase quantification, and dissolution of the materials tested were evaluated. The bone regenerative properties of the materials were evaluated using a rabbit calvaria model. After 2, 4, and 8 weeks, the animals were sacrificed and all samples were subjected to histologic observation and histomorphometric analysis. The material characterization showed that all materials tested presented variation in particle size, porosity and composition with different degrees of HA/TCP/lower stoichiometry phase ratios. Histologically, the calvarial defects presented temporal bone filling suggesting that all material groups were biocompatible and osteoconductive. Among the different materials tested, there were significant differences found in the amount of bone formation as a function of time. At 8 weeks, the micro/nanoporous material presenting similar to 55,TCP:45%,HA composition ratio presented higher amounts of new bone regeneration relative to other blends and a decrease in the amount of soft tissue infiltration. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Photocatalyst ceramic powder that presented high photoactivity based on TiO2 modified with 25% molar of SnO2 and up to 5% molar of Ag2O was obtained in the present work. The aforementioned ceramic powder was obtained using all commercial oxides as well as the oxides mixture technique. The powders were ground in high energy mill for one hour with subsequent thermal treatment at 400°C for four hours. They were, furthermore, characterized using surface area of around 6m2/g, where the X-Ray diffraction results provided evidence for the presence of anatase and rutile phases, known to be typical characteristics of both the TiO2 and SnO2 used. During the thermal treatment, Ag2O was reduced to metallic silver. The photodegradation rehearsals were carried out using a 0.01 mmol/L Rhodamine B solution in a 100mg/L photocatalyst suspension in a 500ml beaker, which was irradiated with 4W germicide Ultraviolet light of 254nm. In addition, samples were removed after duration of about 10 minutes to an hour, where they were analyzed thoroughly in UV-vis spectrophotometer. The analysis of the results indicated that for the compositions up to 2.5% molar of Ag2O, the photoactivity was found to be greater than that of Degussa P25 photocatalyst powder, and as such it was then used as a reference. Taking into account 90% degradation of Rhodamine B, a duration period of 11 minutes was obtained for the developed photocatalyst powder compared to the 38 minutes observed for the Degussa P25. FEG-SEM micrographies enabled the verification of the morphology as well as the interaction of the oxide particles with the metallic silver, which led us to propose a model for the increase in photoactivity observed in the photocatalyst powder under investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study shows a possibility of using municipal sewage sludge after thermal treatment in the production of a filtering material to water treatment. Due to the fast urbanization and implementation of high standards for effluent in many countries in recent years, the sewage sludge is being produced in an ever increasing amount. Therefore, the use of sludge is a suitable solution for the expected large quantity of sludge. Dehydration of sludge was performed by controlled heating at temperatures of 1100 degrees C, 850 degrees C, 650 degrees C, 350 degrees C for 3 hours. After thermal treatment the sludge was characterized by X-ray fluorescence, TG/DTG/DTA, residue solubilization and residue lixiviation tests. The aim of the present work was to observe, thought the characterization techniques, if the treated sewage sludge is or not adequate to be used as filter material to water treatment. It will be verified which treatment temperature of the sludge offer possibility to its use in water treatment without carrying pollutants in concentrations out of the standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of pores in ceramics is directly related to the chosen forming process. So, in the starch consolidation method, the ceramics show, after burning, pores with morphology similar to that presented by this organic material. on the other hand, the increase in solid load leads up to alterations in dispersion viscosity, increasing the thermal stresses during drying and sintering processes. In order to verify the solid percentage influence in ceramic final properties, samples were prepared with silicon carbide in different compositions using or not starch as binder agent and pore forming element. The characterization of the ceramic pieces was performed by superficial roughness measurements, porosity besides by optical and scanning electron microscopy. The results showed ceramics with SiC and starch presented physical and microscopic properties slightly higher in relation to those with only ceramic powder in their composition. The presence of organic material, agglomerated and foam during the forming were essential for the final properties of the studied samples.