10 resultados para Central chemoreception
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. This nucleus is a mesencephalic structure of the amphibian brain and is probably homologous to the LC in mammals. There are no data available for the role of LC in the central chemoreception of amphibians. Thus the present study was designed to investigate whether LC of toads (Bufo schneideri) is a CO2/H+ chemoreceptor site. Fos immunoreactivity was used to verify whether the nucleus is activated by hypercarbia (5% CO2 in air). In addition, we assessed the role of noradrenergic LC neurons on respiratory and cardiovascular responses to hypercarbia by using 6-hydroxydopamine lesion. To further explore the role of LC in central chemosensitivity, we examined the effects of microinjection of solutions with different pH values (7.2, 7.4, 7.6, 7.8, and 8.0) into the nucleus. Our main findings were that 1) a marked increase in c-fos-positive cells in the LC was induced after 3 h of breathing a hypercarbic gas mixture; 2) chemical lesions in the LC attenuated the increase of the ventilatory response to hypercarbia but did not affect ventilation under resting conditions; and 3) microinjection with acid solutions (pH = 7.2, 7.4, and 7.6) into the LC elicited an increased ventilation, indicating that the LC of toads participates in the central chemoreception.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The medullary raphé is an important component of the central respiratory network, playing a key role in CO2 central chemoreception. However, its participation in hypoxic ventilatory responses is less understood. In the present study, we assessed the role of nucleus raphé obscurus (ROb), and specifically 5-HT neurons confined in the ROb, on ventilatory and thermoregulatory responses to hypoxia. Chemical lesions of the ROb were performed using either ibotenic acid (non-specific lesion; control animals received PBS) or anti-SERT-SAP (5-HT specific lesion; control animals received IgG-SAP). Ventilation (VE; whole body plethysmograph) and body temperature (Tb; data loggers) were measured during normoxia (21% O2, N2 balance) and hypoxia exposure (7% O2, N2 balance, 1h) in conscious adult rats. Ibotenic acid or anti-SERT-SAP-induced lesions did not affect baseline values of VE and Tb. Similarly, both lesion procedures did not alter the ventilatory or thermoregulatory responses to hypoxia. Although evidence in the literature suggests a role of the rostral medullary raphé in hypoxic ventilatory responses, under the present experimental conditions our data indicate that caudal medullary raphé (ROb) and its 5-HT neurons neither participate in the tonic maintenance of breathing nor in the ventilatory and thermal responses to hypoxia. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recent reports have suggested that orexins, also known as hypocretins, play an important role in the modulation of respiratory control in mammals, but there are no data available describing the role of the orexinergic system in the peripheral and central chemoreception of non-mammalian vertebrates. Therefore, the present study was designed to examine the localization of orexin-immunoreactive neurons in the brain of toads (Rhinella schneideri) and to investigate the contribution of orexin receptor-1 (OX1R) to the hypoxic and hypercarbic ventilatory responses of these animals during light and dark phases. Our results demonstrated that the orexinergic neurons of R. schneideri are located in the suprachiasmatic nucleus of the diencephalon. Additionally, the intracerebroventricular injection of SB-334867 (OX1R selective antagonist) attenuated the ventilatory response to hypercarbia during the dark phase by acting on tidal volume and breathing frequency, while during the light phase, SB-334867 attenuated the ventilatory response to hypoxia by acting on tidal volume only. We conclude that in the toad R. schneideri, orexinergic neurons are located in the suprachiasmatic nucleus and that OX1R contributes to hypercarbic and hypoxic chemoreflexes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)