18 resultados para Cellulose fiber
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In recent years studies concerning the applications of lignocellulosic/ inorganic couples have resulted in the development of an interesting class of functional materials. In this work a cellulose/NbOPO 4.nH 2O hybrid using cellulose from surgacane bagasse was prepared and characterized in order to test for adsorption applications. The preparation process was conducted by carrying out metallic niobium dilution in hydrofluoric acid in the presence of nitric acid, then adding boric acid to form the complex and, finally, the cellulose sugar cane bagasse was added. Concentrated phosphoric acid was also inserted to precipitate hydrous niobium phosphate particles in the cellulose fiber. This material was characterized by X-ray diffractometry (XRD), thermogravimetry (TG/DTG), and scanning electronic microscopy (SEM) connected to an energy dispersive spectrophotometer (EDS). Results by SEM/EDS show that NbOPO 4.nH 2O was present in structure of the cellulose. During the preparation of the material, using boric acid it was observed that the formation of precipitate occurred in a shorter time than the material prepared without boric acid.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O objetivo deste trabalho foi verificar o efeito dos cortes efetuados a 0, 15, 30 e 45 cm sobre a composição química do capim-elefante (Pennisetum purpureum, Schum.) cv. Roxo, em épocas seca e chuvosa. As amostras foram obtidas de uma área útil de 8,4 m² de cada parcela. Após o corte de uniformização, efetuaram-se dois cortes no período seco, em intervalos de 90 dias, e três no período chuvoso, em intervalos de 60 dias. de cada parcela foi tomada uma amostra de 3 a 5 perfilhos, desidratada em estufa e triturada para analises laboratoriais. Foram avaliados os percentuais de matéria seca (MS), proteína bruta (PB), fibra em detergente neutro (FDN), fibra em detergente ácido (FDA), celulose (CEL), hemicelulose (HCEL), lignina (LIG) e cinzas. As alturas de corte não influenciaram a composição química da forrageira, nem houve interação com as épocas. Com exceção de hemicelulose e cinzas, os cortes na época seca mostraram resultados superiores à chuvosa. As médias nas duas épocas foram 19,70 e 17,44% para MS; 7,74 e 7,25% para PB; 76,41 e 71,13% para FDN; 42,75 e 41,02% para FDA; 31,44 e 30,43% para CEL; 30,66 e 30,28% para HCEL; 9,25 e 7,83% para LIG; e 1,97 e 3,38% para cinzas, nos períodos seco e chuvoso, respectivamente.
Resumo:
Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavours, especially for medical devices. In fact, biomedical devices recently have gained a significant amount of attention because of an increased interest in tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. Due to its unique nanostructure and properties, microbial cellulose is a natural candidate for numerous medical and tissue-engineered applications. Hydrophilic bacterial cellulose fibers of an average diameter of 50 nm are produced by the bacterium Acetobacter xylinum, using a fermentation process. The microbial cellulose fiber has a high degree of crystallinity. Using direct nanomechanical measurement, determined that these fibers are very strong and when used in combination with other biocompatible materials, produce nanocomposites particularly suitable for use in human and veterinary medicine. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization and cell support. The architecture of BC materials can be engineered over length scales ranging from nano to macro by controlling the biofabrication process. The chapter describes the fundamentals, purification and morphological investigation of bacterial cellulose. This chapter deals with the modification of microbial cellulose and how to increase the compatibility between cellulosic surfaces and a variety of plastic materials. Furthermore, provides deep knowledge of fascinating current and future applications of bacterial cellulose and their nanocomposites especially in the medical field, materials with properties closely mimic that of biological organs and tissues were described. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cellulose was extracted from lignocellulosic fibers and nanocrystalline cellulose (NC) prepared by alkali treatment of the fiber, steam explosion of the mercerized fiber, bleaching of the steam exploded fiber and finally acid treatment by 5% oxalic acid followed again by steam explosion. The average length and diameter of the NC were between 200-250 nm and 4-5 nm, respectively, in a monodisperse distribution. Different concentrations of the NC (0.1, 0.5, 1.0, 1.5, 2.0 and 2.5% by weight) were dispersed non-covalently into a completely bio-based thermoplastic polyurethane (TPU) derived entirely from oleic acid. The physical properties of the TPU nanocomposites were assessed by Fourier Transform Infra-Red spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA) and Mechanical Properties Analysis. The nanocomposites demonstrated enhanced stress and elongation at break and improved thermal stability compared to the neat TPU. The best results were obtained with 0.5% of NC in the TPU. The elongation at break of this sample was improved from 178% to 269% and its stress at break from 29.3 to 40.5 MPa. In this and all other samples the glass transition temperature, melting temperature and crystallization behavior were essentially unaffected. This finding suggests a potential method of increasing the strength and the elongation at break of typically brittle and weak lipid-based TPUs without alteration of the other physico-chemical properties of the polymer. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker suspensions were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and X-ray diffraction. Results showed that it was possible to obtain ultrathin cellulose nanowhiskers with diameters as low as 5 nm and aspect ratio of up to 60. A possible correlation between preparation conditions and particle size was not observed. Higher residual lignin content was found to increase thermal stability indicating that by controlling reaction conditions one can tailor the thermal properties of the nanowhiskers. Published by Elsevier Ltd.
Resumo:
Foram utilizados quatro cavalos castrados sem raça definida, distribuídos em blocos casualizados. Objetivou-se estudar a viabilização dos indicadores internos, celulose (CELi) e lignina indigestíveis (LIGi), para predizer a digestibilidade em cavalos. Os tratamentos consistiram na determinação da digestibilidade por método direto com a coleta total de fezes (CT) e indireto pelo uso CELi e LIGi obtidos pelas técnicas in situ (IS) na cavidade ruminal de bovinos e in vivo (IV) nos equinos por meio do saco de náilon móvel (SNM). A produção fecal e taxa de recuperação (p > 0,05) médios encontrados foram de 2,80 kg na MS e 101%, respectivamente. As estimativas dos CD dos nutrientes (p > 0,05) foram adequadamente preditos pela CELi e LIGi, obtidos in situ e in vivo, no qual os valores médios observados foram de 52,63, 54,17, 64,90, 43,73 e 98,28% para MS, MO, PB, FDN e Amido, respectivamente. Concluiu-se que a CELi e LIGi podem ser obtidas in vivo por meio do SNM em equinos, para predizer os coeficientes de digestibilidade de nutrientes, consumindo dieta mista.
Resumo:
In this study, microcrystalline cellulose (MCC) was prepared from the acid hydrolysis of bacterial cellulose (BC) produced in culture medium of static Acetobacter xylinum. The MCC-BC produced an average particle size between 70 and 90 mu m and a degree of polymerization (DP) of 250. The characterization of samples was performed by thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy (SEM). The MCC shows a lower thermal stability than the pristine cellulose, which was expected due to the decrease in the DP during the hydrolysis process. In addition, from X-ray diffractograms, we observed a change in the crystalline structure. The images of SEM for the BC and MCC show clear differences with modifications of BC fiber structure and production of particles with characteristics similar to commercial MCC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)