110 resultados para Cell survival assay

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. Furthermore, there is a search for compounds with estrogenic activity that can replace estrogen in hormone replacement therapy during menopause, without the undesirable effects of estrogen, such as the elevation of breast cancer occurrence. Thus, the principal objective of this study was to assess the estrogenic activity of flavonoids with different hydroxylation patterns: quercetin, kaempferol, luteolin, fisetin, chrysin, galangin, flavone, 3-hydroxyflavone, 5-hydroxyflavone and 7-hydroxyflavone via two different in vitro assays, the recombinant yeast assay (RYA) and the MCF-7 proliferation assay (E-screen), since the most potent phytoestrogens are members of the flavonoid family. In these assays, kaempferol was the only compound that showed ERα-dependent transcriptional activation activity by RYA, showing 6.74±1.7 nM EEQ, besides acting as a full agonist for the stimulation of proliferation of MCF-7/BUS cells. The other compounds did not show detectable levels of interaction with ER under the conditions used in the RYA. However, in the E-screen assay, compounds such as galangin, luteolin and fisetin also stimulated the proliferation of MCF-7/BUS cells, acting as partial agonists. In the evaluation of antiestrogenicity, the compounds quercetin, chrysin and 3-hydroxyflavone significantly inhibited the cell proliferation induced by 17-β-estradiol in the E-screen assay, indicating that these compounds may act as estrogen receptor antagonists. Overall, it became clear in the assay results that the estrogenic activity of flavonoids was affected by small structural differences such as the number of hydroxyl groups, especially those on the B ring of the flavonoid. © 2013 Resende et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chloroform and eucalyptol are widely used in clinical dentistry as gutta-percha solvents. However, these compounds may represent a hazard to human health, especially by causing injury to genetic apparatus and/or inducing cellular death. In this study, the genotoxic and cytotoxic potentials associated with exposure to chloroform and eucalyptol were assessed on mouse lymphoma cells in vitro by the single cell gel (comet) assay and trypan blue exclusion test, respectively. Both gutta-percha solvents proved to be cytotoxic at the same levels in concentrations of 2.5, 5 and 10 μL/mL (p<0.05). On the other hand, neither of the solvents induced DNA breakage. Taken together, these results suggest that although both tested compounds (chloroform and eucalyptol) are strong cytotoxicants, it seems that they are not likely to increase the level of DNA damage on mammalian cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formocresol, paramonochlorophenol, and calcium hydroxide are widely used in dentistry because of their antibacterial activities in root canal disinfection. However, the results of genotoxicity studies using these materials are inconsistent in literature. The goal of this study was to examine the genotoxic potential of formocresol, paramonochlorophenol, and calcium hydroxide using mouse lymphoma cells and human fibroblasts cells in vitro by the comet assay. Data were assessed by Kruskal-Wallis nonparametric test. The results showed that all compounds tested did not cause DNA damage for the tail moment or tail intensity parameters. These findings suggest that formocresol, paramonochlorophenol, and calcium hydroxide do not promote DNA damage in mammalian cells and that the comet assay is a suitable tool to investigate genotoxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of mineral trioxide aggregate (MTA), Sealapex, and a combination of Sealapex and MTA (Sealapex Plus) on the reaction of subcutaneous connective tissue of rats, and on cell viability and cytokine production in mouse fibroblasts. The tissue reaction was carried out with dentin tubes containing the materials implanted in the dorsal connective tissue of rats. The histological analysis was performed after 7 and 30 days. Millipore culture plate inserts with polyethylene tubes filled with materials were placed into 24-well cell culture plates with mouse fibroblasts to evaluate the cell viability by MTT assay. ELISA assays were also performed after 24 h of exposure of the mouse fibroblasts to set material disks. Histopathologic examination showed Von Kossa-positive granules that were birefringent to polarized light for all the studied materials at the tube openings. No material inhibited the cell viability in the in vitro test. It was detected IL-6 production in all root-end filling materials. MTA and Sealapex Plus induced a slight raise of mean levels of IL-1β. The results suggest that Sealapex Plus is biocompatible and stimulates the mineralization of the tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intestinal cancers are correlated with diet. Thus, determining and understanding nutrient-genome interactions is important. The present work assessed the action of the oligoelement selenium on cell proliferation, cytotoxicity, and in situ apoptosis induction and on the expression CASP9, BCL-XL and APC genes in intestinal adenocarcinoma cells (HT29). HT29 cells were cultured and treated with selenium at concentrations of 5, 50 and 500 ng/mL with or without the damage-inducing agent doxorubicin. These cells were then evaluated for cytotoxicity (MTT), cell proliferation and in situ apoptosis induction. To evaluate gene expression, only the cells treated with 500 ng/mL of selenium were used. RNA was extracted from these cells, and the expressions of CASP9, BCL-XL and APC were analyzed by the RT-PCR method. The GAPDH gene was used as a reference gene. The MTT assay showed that selenium was not cytotoxic at any of the concentrations tested. The cell proliferation assay showed that selenium did not interfere with cell proliferation at the three concentrations tested. In contrast, when the three concentrations were combined with doxorubicin, a significant decrease in the proliferation rate was observed. The apoptosis rate was significantly increased in the selenium (500 ng/mL) and doxorubicin group. CASP9 expression was increased and BCL-XL expression decreased in the selenium (500 ng/mL) and doxorubicin group. APC was significantly increased in the selenium group alone. These results show that selenium increases apoptosis, especially when it is associated with a damage-inducing agent. Also, selenium has an important role in the expression of the APC gene, which is related to cell cycle regulation. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work investigated the effects of increasing temperature from 30 degrees C to 47 degrees C on the physiological and genetic characteristics of Saccharomyces cerevisiae strain 63M after continuous fermentation with cell recycling in a system of five reactors in series. Steady state was attained at 30 degrees C, and then the temperature of the system was raised so it ranged from 35 degrees C in the last reactor to 43 degrees C in the first reactor or feeding reactor with a 2 degrees C difference between reactors. After 15 days at steady state, the temperature was raised from 37 degrees C to 45 degrees C for 25 days at steady state, then from 39 degrees C to 47 degrees C for 20 days at steady state. Starter strain 63M was a hybrid strain constructed to have a MAT a/alpha, LYS/lys, URA/ura genotype. This hybrid yeast showed vigorous growth on plates at 40 degrees C, weak growth at 41 degrees C, positive assimilation of melibiose, positive fermentation of galactose, raffinose and sucrose. of 156 isolates obtained from this system at the end of the fermentation process, only 17.3% showed the same characteristics as starter strain 63M. Alterations in mating type reaction and in utilization of raffinose, melibiose, and sucrose were identified. Only 1.9% of the isolates lost the ability to grow at 40 degrees C. Isolates showing requirements for lysine and uracil were also obtained. In addition, cell survival was observed at 39-47 degrees C, but no isolates showing growth above 41 degrees C were obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerous natural compounds have a potential for therapeutic applications, but may have to be chemically modified to alter toxic side effects. We investigated structural parameters that could affect the cytotoxicity of isocoumarins similar to 9,10-dihydroxy-5,7-dimethoxy-1H-naphtho(2,3c)pyran-1-one (paepalantine 1). Paepalantine 1 has antimicrobial activity, as well as significant in vitro cytotoxic effects in the McCoy cell line. Two other natural and two semi-synthetic isocoumarins with similar structures obtained from the capitula of Paepalanthus bromelioides were tested on the same cell line by the neutral red assay. Substitution of the 9 and/or 10-OH group made these compounds less cytotoxic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: Taking into consideration that DNA damage plays an important role in carcinogenesis, the purpose of this study was to evaluate whether regular and white mineral trioxide aggregate (MTA) are able to induce genetic damage in primary human cells. Study design: Human peripheral lymphocytes obtained from 10 healthy volunteers were exposed to 2 presentation forms of MTA at final concentrations ranging from 1 to 1000 μg/mL for 1 hour at 37°C. The negative control group was treated with vehicle control (phosphate buffer solution, PBS) for 1 hour at 37°C and the positive control group was treated with hydrogen peroxide (at 100 μM) for 5 minutes on ice. Results were analyzed by the Friedman nonparametric test. Results: The results pointed out that either regular or white MTA in all concentrations tested did not induce DNA breakage in human peripheral lymphocytes as depicted by the mean tail moment. Conclusion: In summary, our results indicate that exposure to MTA may not be a factor that increases the level of DNA lesions in human peripheral lymphocytes as detected by single cell gel (comet) assay. © 2006 Mosby, Inc. All rights reserved.